湖北农业科学 ›› 2022, Vol. 61 ›› Issue (1): 146-152.doi: 10.14088/j.cnki.issn0439-8114.2022.01.029

• 信息工程 • 上一篇    下一篇

基于机器学习的富硒茶评论文本消费者满意度感知研究

王涛, 刘星亮, 王泓淇, 于志军   

  1. 安康学院电子与信息工程学院,陕西 安康 725000
  • 收稿日期:2021-08-09 出版日期:2022-01-10 发布日期:2022-01-26
  • 作者简介:王 涛(1996-),男,陕西安康人,助教,硕士,主要从事电子商务应用技术研究,(电话)19829456909(电子信箱)1379150080@qq.com。
  • 基金资助:
    安康市科学技术研究发展计划项目(AK2019NY-10); 安康学院校级项目(2019AYQJ02); 大学生创新创业训练计划项目省级项目(S202111397034); 安康学院科研创新发展基金项目(2021DKYCJ01)

Research on consumer satisfaction perception of Selenium-enriched tea review text based on machine learning

WANG Tao, LIU Xing-liang, WANG Hong-qi, YU Zhi-jun   

  1. School of Electronics and Information Engineering,Ankang University,Ankang 725000,Shaanxi,China
  • Received:2021-08-09 Online:2022-01-10 Published:2022-01-26

摘要: 为探究农产品消费者在线评论数据对消费者满意度决策的重要影响,选取具有体验性的富硒茶作为研究对象,使用机器学习分类算法对富硒茶评论文本进行情感分类,使用TF-IDF和LDA模型进行文本特征词与主题可视化挖掘,识别消费者对富硒茶的满意度影响因素。研究发现,消费满意度主要体现在对产品的信任感知、营销感知、质量感知、物流服务和价格感知5大因素,质量感知与信任感知是影响消费者满意度差评的主要因素。通过机器学习与数据挖掘识别出富硒茶不同维度的消费者满意度的指标,为企业和政府提供营销决策参考,对推动区域特色农产品富硒茶品牌建设与产业发展提供参考价值。

关键词: 机器学习, 情感分类, LDA, TF-IDF, 满意度感知

Abstract: In order to explore the important influence of online comment data of agricultural products on consumer satisfaction decision-making, the selenium-enriched tea with experience was selected as the research object, machine learning classification algorithm was used to classify the sentiment of the selenium-enriched tea review text, and TF-IDF and LDA models perform visual mining of text feature words and topics, and identify factors affecting consumers’ satisfaction with selenium-enriched tea. The study found that consumer satisfaction was mainly embodied in the five factors of product trust perception, marketing perception, quality perception, logistics service and price perception. Quality perception and trust perception were the main factors that affect negative consumer satisfaction ratings. Through machine learning and data mining, different dimensions of consumer satisfaction indicators for selenium-enriched tea are identified, which can provide marketing decision-making reference for enterprises and governments, and provide reference value for promoting the brand building and industrial development of selenium-enriched tea of regional characteristic agricultural products.

Key words: machine learning, sentiment classification, LDA, TF-IDF, satisfaction perception

中图分类号: