湖北农业科学 ›› 2024, Vol. 63 ›› Issue (12): 191-198.doi: 10.14088/j.cnki.issn0439-8114.2024.12.034

• 信息工程 • 上一篇    下一篇

基于YOLOv3深度学习算法的桑椹菌核病严重度检测方法研究与应用

朱志贤1, 邱盼2, 张成1, 董朝霞1, 张凤1, 胡兴明1, 于翠1   

  1. 1.湖北省农业科学院经济作物研究所,武汉 430064;
    2.飞卓科技(上海)股份有限公司,上海 201506
  • 收稿日期:2024-11-06 出版日期:2024-12-25 发布日期:2025-01-08
  • 通讯作者: 于 翠,研究员,博士,主要从事桑树栽培与育种研究,(电子信箱)mrsyu888@hotmail.com。
  • 作者简介:朱志贤(1987-),女,湖北武穴人,副研究员,主要从事桑树栽培与育种研究,(电子信箱)zhuzhixian@hbaas.com。
  • 基金资助:
    国家重点研发计划支持项目(2020YFD1000700); 湖北省农业科技成果转化资金项目(2024EBA009); 国家现代农业产业技术体系建设专项(CARS-18-SYZ10)

Research and application of detection method of mulberry fruit sclerotiniose disease severity based on YOLOv3 deep learning algorithm

ZHU Zhi-xian1, QIU Pan2, ZHANG Cheng1, DONG Zhao-xia1, ZHANG Feng1, HU Xing-ming1, YU Cui1   

  1. 1. Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
    2. Feejoy Technology (Shanghai) Co., Ltd., Shanghai 201506, China
  • Received:2024-11-06 Published:2024-12-25 Online:2025-01-08

摘要: 通过对5种不同发病级别的1万张桑椹果实图像进行训练,基于YOLOv3深度学习算法并结合迁移学习法,获得桑椹菌核病严重度目标检测模型。为了验证该模型的鲁棒性,与同样采用迁移学习的EfficientDet、Faster R-CNN和YOLOv4原始模型进行了对比。结果表明,YOLOv3模型对健康果实和菌核病果实检测的平均精确率均值为0.79,比其他模型提高6.76%~54.90%,其对不同发病级别菌核病果实检测的平均精确率比其他模型提高7.04%~80.95%,查准率和查全率为最优或者次优。采用Flask+Vue技术构建的检测识别系统可在1 s内获取病害严重度、果实大小、置信度信息,也能实现对视频的动态识别,为桑椹种植中自动化病害监测和快速高效精准施药提供了可靠的软件处理平台。

关键词: 桑椹菌核病, 深度学习算法, 迁移学习法, YOLOv3, 病害严重度检测

Abstract: A target detection model for mulberry fruit sclerotiniose disease severity was constructed based on YOLOv3 deep learning algorithm combined with transfer learning by training on 10 000 images of mulberry fruit with five different disease severity levels. To verify the robustness of the YOLOv3 model, comparative experiments were conducted with the EfficientDet, Faster R-CNN and YOLOv4 that also used transfer learning. The results showed that the average precision rate of the YOLOv3 model could reach 0.79 for detecting healthy fruits and sclerotinia fruit, which was 6.76%~54.90% higher than that of the other models. The average precision rate of the YOLOv3 model for detecting disease severity levels of sclerotinia fruit was 7.04%~80.95% higher than that of the other models. The detection precision rate and recall rate of the YOLOv3 model were optimal or sub-optimal. The detection and recognition system constructed by Flask+Vue technology could obtain disease severity, fruit size and confidence information within 1 s, and could also realize dynamic recognition of video. This system could provide a reliable software processing platform for automated disease monitoring and fast, efficient, and precise fungicide application during mulberry cultivation.

Key words: mulberry fruit sclerotiniose disease, deep learning algorithm, transfer learning, YOLOv3, detection of disease severity

中图分类号: