湖北农业科学 ›› 2018, Vol. 57 ›› Issue (2): 110-114.doi: 10.14088/j.cnki.issn0439-8114.2018.02.028

• 农业工程 • 上一篇    下一篇

基于全极化微波遥感的干旱区典型绿洲盐渍化信息提取

段素素a, 依力亚斯江·努尔麦麦提a, b, c, 郭莉丹a, 范宏a, 哈班拜a   

  1. 新疆大学,a.资源与环境科学学院;
    b.绿洲生态教育部重点实验室;
    c.智慧城市与环境建模普通高校重点实验室,乌鲁木齐 830046
  • 收稿日期:2017-08-15 出版日期:2018-01-25 发布日期:2018-01-10
  • 通讯作者: 依力亚斯江·努尔麦麦提,男,博士,主要从事遥感与地理信息系统及其干旱区资源环境应用研究,(电子信箱)ilyas777v@163.com。
  • 作者简介:段素素(1993-),女,河南淮阳人,在读本科生,研究方向为遥感与地理信息系统应用,(电话)15739561559(电子信箱)2592146705@qq.com
  • 基金资助:
    国家自然科学基金项目(41561089); 新疆大学大学生创新训练计划项目(XJU-SRT-16066)

Extracting Soil Salinization in Typical Arid Area Based on Fully PolSAR

DUAN Su-sua, ILYAS NURMEMETa, b, c, GUO Li-dana, FAN Honga, HABANBAia   

  1. a.College of Resources and Environmental Science;
    b.Ministry of Education Key Laboratory of Oasis Ecology;
    c.Key Laboratory of Intelligent City Modeling,Xinjiang University,Urumqi 830046,China
  • Received:2017-08-15 Online:2018-01-25 Published:2018-01-10

摘要: 采用Krogager、Pauli两种极化目标分解方法,分别构建基于支持向量机(Support Vector Machine, SVM)的分类模型(分别简称Krogager-SVM和Pauli-SVM),以渭干河-库车河三角洲绿洲地区(渭-库绿洲)为研究区域,利用全极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)遥感影像数据,进行干旱区典型绿洲不同程度盐渍化信息的提取研究。结合野外实地验证数据,将两种模型的分类结果与传统SVM分类作对比分析。结果表明,Krogager-SVM和Pauli-SVM模型改善了传统干旱区盐渍化分类方法,其总体精度从74.17%(传统SVM)分别提高到了80.598 0%和82.387 6%,分别提高了6.43个百分点和8.21个百分点(Kappa系数分别提高0.08和0.12)。表明本研究所提出的分类模型在PolSAR数据的盐渍化信息提取方面有着一定的潜力。

关键词: 盐渍化, PolSAR, Pauli分解, Krogager分解, SVM

Abstract: Two classification models(namely Krogager-SVM and Pauli-SVM) on bases of Support Vector Machine (SVM) wereproposed and conductedrespectively,through using Krogager and Pauli polarization decomposition methods. A fully polarimetric synthetic aperture radar(SAR) remote sensing data was utilized over the study area(on the delta oasis between the Weigan and Kuche River in Xinjiang, China),and different degrees of salinizized soil information in the typical oasis of arid area was extacted. Then by adopting the field verification data comparison and corresponding analysis was conducted between the classification results of proposed methodology and traditional SVM classification method. The results show that the Krogager-SVM and Pauli-SVM classification models improved classification accuracy in contrast with the traditional classification method for soil salinization extraction in the arid regions,and the overall accuracy enhanced from 74.17% to 80.598 0% and 82.387 6% respectively(increased by 6.43% and 8.21%,and the kappa coefficients increased by 0.08 and 0.12 respectively). This indicates that the classification models proposed in this paper have some potential in the soil salinization extraction by using fully PolSAR data.

Key words: salinization, PolSAR, Pauli decomposition, Krogagger decomposition, SVM

中图分类号: