湖北农业科学 ›› 2020, Vol. 59 ›› Issue (23): 152-155.doi: 10.14088/j.cnki.issn0439-8114.2020.23.034

• 信息工程 • 上一篇    下一篇

一种基于候选区域的多种食品图像识别系统

沈凤仙   

  1. 三江学院计算机科学与工程学院,南京 210000
  • 收稿日期:2020-06-17 出版日期:2020-12-10 发布日期:2020-12-30
  • 作者简介:沈凤仙(1984-),女,江苏南京人,讲师,硕士,主要从事食品图形图像处理研究及教学工作,(电话)15345188753(电子信箱)zhagnyi0377@foxmail.com

A multi-food image recognition system based on candidate region

SHEN Feng-xian   

  1. School of Computer Science and Engineering,Sanjiang University,Nanjing 210000,China
  • Received:2020-06-17 Online:2020-12-10 Published:2020-12-30

摘要: 通过对候选区域食物进行检测,根据不同特征对其进行分类。通过融合多个区域检测器的输出结果来检测候选区域,以组合每个类别的图像特征MKL估计最优权值。基于特征融合的食品识别方法,应用于具有各种视觉特征的候选区域边界盒,按照得分降序排列,估计多重候选食物的图像。结果表明,对于多种食品图像数据集,实现了55.8%的分类率,对于食品识别领域具有一定的参考意义。

关键词: 多种食品图像, 区域检测, 窗口搜索, 多核学习

Abstract: This paper proposes a method for recognizing multi-food images by detecting foods in candidate regions and classifying them according to different characteristics.The candidate areas are detected by fusing the output results of multiple area detectors to combine the image feature MKL of each category to estimate the optimal weight.The food recognition method based on feature fusion was applied to the bounding box of candidate regions with various visual features,and through experiments,arranged in descending order of score to estimate images of multiple candidate foods.The results show that for a variety of food image data sets,a classification rate of 55.8% is achieved.The research results have certain reference significance for the field of similar food identification.

Key words: multiple food images, area detection, window search, multi-core learning

中图分类号: