湖北农业科学 ›› 2024, Vol. 63 ›› Issue (5): 194-200.doi: 10.14088/j.cnki.issn0439-8114.2024.05.034

• 农业工程 • 上一篇    下一篇

基于改进U-Net的冬季休眠期矮化苹果树修剪枝条分割方法

宋振帅1, 宋龙2, 周艳2, 何磊2, 朱贺1, 王治民1, 韩大龙2   

  1. 1.石河子大学机械电气工程学院,新疆 石河子 832003;
    2.新疆农垦科学院机械装备研究所,新疆 石河子 832000
  • 收稿日期:2022-09-13 出版日期:2024-05-25 发布日期:2024-06-04
  • 通讯作者: 周 艳(1970-),女,四川大竹人,研究员,博士,主要从事林果机械化研究,(电子信箱)806551889@qq.com。
  • 作者简介:宋振帅(1997-),男,山东临沂人,硕士,主要从事图像识别与分割研究,(电话)19190249234(电子信箱)1459588016@qq.com;
  • 基金资助:
    新疆生产建设兵团重大科技项目(2021AA00503); 国家重点研发计划项目(2017YFD07014); 新疆生产建设兵团农业领域重点科技攻关项目(2018AB016)

Segmentation method for pruned branches of dwarfing apple trees during winter dormancy period based on improved U-Net

SONG Zhen-shuai1, SONG Long2, ZHOU Yan2, HE Lei2, ZHU He1, WANG Zhi-min1, HAN Da-long2   

  1. 1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China;
    2. Institute of Machinery and Equipment, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2022-09-13 Published:2024-05-25 Online:2024-06-04

摘要: 针对冬季休眠期矮化苹果树果园修剪中人工修剪及半自动化修剪作业效率低的问题,在U-Net网络模型基础上,通过VGG16与U-Net结合构建改进的U-Net网络模型,采用VGG16作为上采样特征提取网络,运用注意力机制SEnet增强图像特征提取能力,提升分割精度,进而与下采样提取的图像特征进行融合,实现端到端图像分割效果。结果表明,测试集上SE2网络模型(改进U-Net网络模型)的MIoUMPA均大于原始U-Net网络模型;在SE2网络模型中,当r=8时测试集的MIoU、测试集的MPA、训练集的Fscore、测试集的Fscore均最大,分别为89.59%、94.17%、0.942 806、0.944 506;在试验台上对SE2网络模型 (r=8)进行性能验证,表明SE2网络模型(r=8)分割性能较好。

关键词: 改进U-Net, 网络模型, 冬季休眠期, 矮化苹果树, 修剪枝条, 分割方法

Abstract: In response to the low efficiency of manual and semi-automatic pruning operations in dwarfing apple trees during the winter dormancy period,based on the U-Net network model, an improved U-Net network model was constructed by combining VGG16 with U-Net. Using VGG16 as the upsampling feature extraction network, the attention mechanism SEnet was used to enhance the image feature extraction ability, improve segmentation accuracy, and then fuse with the downsampling extracted image features to achieve the end-to-end image segmentation effect. The results showed that the MIoU and MPA of the SE2 network model (improved U-Net network model) on the test set were greater than those of the original U-Net network model;in the SE2 network model, when r=8, the MIoU of the test set, MPA of the test set, Fscore of the training set, and Fscore of the test set were all the highest, with values of 89.59%, 94.17%, 0.942 806, and 0.944 506, respectively; the performance of the SE2 network model (r=8) was validated on the test bench, and it was found that the segmentation performance of the SE2 network model (r=8) was good.

Key words: improved U-Net, network model, winter dormancy period, dwarfing apple trees, pruned branches, segmentation method

中图分类号: