湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 35-38.doi: 10.14088/j.cnki.issn0439-8114.2024.08.007

• 图像图形识别 • 上一篇    下一篇

基于改进深度置信网络的水果分类识别方法

郭迎娣1, 赵超宇2   

  1. 1.烟台职业学院智能控制系,山东 烟台 264670;
    2.山东农业大学农学院,山东 泰安 271001
  • 收稿日期:2024-01-18 出版日期:2024-08-25 发布日期:2024-09-05
  • 作者简介:郭迎娣(1979-),女,山东潍坊人,讲师,主要从事电子信息等研究,(电话)13256987756(电子信箱)13256987756@163.com。
  • 基金资助:
    烟台职业学院校本科研项目(2023XBZC035); 山东省教育厅教育课题项目(2014zcj081)

Fruit classification recognition methods based on improved deep confidence network

GUO Ying-di1, ZHAO Chao-yu2   

  1. 1. Intelligent Control Department, Yantai Vocational College, Yantai 264670, Shandong, China;
    2. College of Agriculture, Shandong Agricultural University, Tai’an 271001, Shandong, China
  • Received:2024-01-18 Published:2024-08-25 Online:2024-09-05

摘要: 为了解决现有水果分类识别方法存在的识别精度低等问题。基于水果分类识别系统,提出了一种用于不同水果分类识别的改进深度置信网络。通过2路深度置信网络将不同特征图像作为输入,使用SoftMax对输出分类。与常规分类识别方法相比,所提方法能较准确地实现不同水果的分类识别,多特征融合识别准确率最高,识别准确率为98.75%,满足水果分类识别的需要。通过优化现有深度学习方法,可有效提高该方法的性能。

关键词: 水果识别, 自动检测, 深度置信网络, 多特征融合, SoftMax 分类器

Abstract: In order to solve the problems of low recognition accuracy in existing fruit classification recognition methods, based on the fruit classification recognition system, an improved deep confidence network for different fruit classification recognition was proposed. Different feature images were taken as input through 2-channel deep confidence network, and the output was classified using SoftMax. Compared with the conventional classification recognition methods, the proposed method could more accurately achieve the classification recognition of different fruits, and the multi-feature fusion recognition accuracy was the highest, with the recognition accuracy of 98.75%, which met the needs of fruit classification recognition. By optimizing the existing deep learning method, the performance of this method could be effectively improved.

Key words: fruit recognition, automatic detection, deep confidence network, multi-feature fusion, SoftMax classifier

中图分类号: