湖北农业科学 ›› 2024, Vol. 63 ›› Issue (11): 191-196.doi: 10.14088/j.cnki.issn0439-8114.2024.11.032

• 信息工程 • 上一篇    下一篇

基于坐标注意力机制增强的CenterNet模型在烟草甲检测中的应用

孙俊峰, 王保录, 黄琰淦, 黄滔   

  1. 广西中烟工业有限责任公司柳州卷烟厂,广西 柳州 545000
  • 收稿日期:2024-07-30 出版日期:2024-11-25 发布日期:2024-12-03
  • 通讯作者: 王保录(1982-),男,河南商丘人,工程师,硕士,主要从事卷烟工厂设备管理、控制工程技术、信息化技术研究,(电子信箱)164387988@qq.com。
  • 作者简介:孙俊峰(1981-),男,河南鹤壁人,工程师,主要从事卷烟工厂项目管理、电气控制工程技术、智能工程技术研究,(电话)18577638061(电子信箱)Junfengsun1981@163.com。
  • 基金资助:
    广西壮族自治区工业和信息化厅技术创新项目(GXZYBF2022D004)

Application of CenterNet model enhanced by coordinate attention mechanism in Lasioderma serricorne detection

SUN Jun-feng, WANG Bao-lu, HUANG Yan-gan, HUANG Tao   

  1. Liuzhou Cigarette Factory, China Tobacco Guangxi Industrial Co.,Ltd., Liuzhou 545000, Guangxi, China
  • Received:2024-07-30 Published:2024-11-25 Online:2024-12-03

摘要: 通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、每秒帧率(FPS)以及模型参数量(Params size)作为评价指标,对CAM-CenterNet模型、CenterNet模型、YOLOv3模型和Faster R-CNN模型的烟虫检测性能进行对比。结果表明,在召回率和平均精度方面,YOLOv3模型表现最好,CAM-CenterNet模型稍落后于YOLOv3模型,但高于其他模型;在帧率方面,CAM-CenterNet模型检测烟虫图像的速度较YOLOv3模型更快,且模型参数量更少,对设备配置要求更低。在检测个体较小的烟虫时,CAM-CenterNet模型的烟虫检出数量高于Faster R-CNN模型、YOLOv3模型。CAM-CenterNet模型不仅能更多地关注烟虫目标特征,而且能很好地抑制烟丝、烟末等杂质带来的干扰,实现烟虫的有效检测。CAM-CenterNet模型能满足卷烟厂对烟虫检测速度和精度的要求,可以为烟厂的烟虫整治提供技术支持。

关键词: 坐标注意力机制, CenterNet模型, CAM-CenterNet模型, 烟草甲(Lasioderma serricorne)检测

Abstract: By incorporating the coordinate attention mechanism into the CenterNet model, the CAM-CenterNet model focused more on channels and positions that had good representation ability for Lasioderma serricorne (hereinafter referred to as tobacco worms), reducing the interference of impurities such as cut tobacco and tobacco dust. This study compared the tobacco worms detection performance of CAM-CenterNet model, CenterNet model, YOLOv3 model, and Faster R-CNN model using precision, recall, mAP, frames per second (FPS), and model parameter size as evaluation metrics. The results indicated that the YOLOv3 model performed the best in terms of recall and average accuracy, while the CAM-CenterNet model lagged slightly behind the YOLOv3 model but outperformed other models;in terms of frame rate, the CAM-CenterNet model detected tobacco worms images faster than the YOLOv3 model, with fewer model parameters and lower requirements for device configuration. The CAM-CenterNet model detected a higher number of tobacco worms than the Faster R-CNN model and YOLOv3 model when detecting smaller individuals. The CAM-CenterNet model not only focused more on the target features of tobacco worms, but also effectively suppressed the interference caused by impurities such as cut tobacco leaves and tobacco dust, achieving effective detection of tobacco worms. The CAM-CenterNet model could meet the requirements of cigarette factories for the speed and accuracy of tobacco pest detection, and could provide technical support for tobacco pest control in cigarette factories.

Key words: coordinate attention mechanism, CenterNet model, CAM-CenterNet model, Lasioderma serricorne detection

中图分类号: