[1] 杨学娇,毛润科,王小军,等.甘肃小陇山林区野生木本观赏植物资源调查[J].中国林副特产,2024(3):59-62. [2] 詹咪莎,黄晓玲,申建双,等.东白山自然保护区木本植物资源调查及其吸引力价值分析[J].分子植物育种, 2024, 22(12): 4079-4091. [3] 张亚菲,黄俊华,杨志刚,等.新疆木本植物区系分析[J].黑龙江农业科学, 2024(6): 48-56. [4] XU N Y, KANG M J, ZOBRIST J D, et al.Genetic transformation of recalcitrant upland switchgrass using morphogenic genes[J]. Front Plant Sci, 2021, 12: 781565. [5] BANAKAR R, WANG K.Biolistic transformation of japonica rice varieties[J].Methods Mol Biol, 2020, 2124: 163-176. [6] LIN C S, HSU C T, YANG L H, et al.Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration[J]. Plant Biotechnol J,2018,16(7): 1295-1310. [7] 唐丽颖,陈利娜,敬丹,等.采用花粉管通道法遗传转化月季石榴的研究[J].江西农业学报, 2021, 33(3): 17-24. [8] HE X L, MIYASAKA S C, FITCH M M, et al.Agrobacterium tumefaciens-mediated transformation of taro(Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii[J]. Plant Cell Rep, 2008, 27(5): 903-909. [9] HIEI Y, KOMARI T, KUBO T.Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Mol Biol, 1997, 35(1-2): 205-218. [10] TEPFER D.Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype[J]. Cell, 1984, 37(3): 959-967. [11] 胡懋,曾杨璇,苗华彪,等.根癌农杆菌介导真菌遗传转化的研究及应用[J].微生物学通报,2021,48(11):4344-4363. [12] 何旭,高源,张群野,等.白城小黑杨遗传转化体系建立及其应用[J].植物研究, 2023, 43(5): 667-678. [13] 俞子承,凌聪,陈赢男,等.雄性二倍体毛白杨再生体系的构建和遗传转化的研究[J].南京林业大学学报(自然科学版), 2022, 46(1): 187-196. [14] 王帆. 连翘遗传转化体系的建立[D].郑州:河南农业大学,2022. [15] 贾娜,王晓红,李林,等.钩藤再生体系优化与遗传转化条件探究[J].种子, 2022, 41(4): 36-43. [16] HORSCH R B,FRY J E,HOFFMANN N L, et al.A simple and general method for transferring genes into plants[J]. Science, 1985, 227(4691): 1229-1231. [17] 罗萍,张昊楠,徐建民,等.发根农杆菌介导的尾巨桉遗传转化体系的建立[J].植物研究, 2022, 42(3): 512-520. [18] MOORE L, WARREN G, STROBEL G.Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes[J]. Plasmid, 1979, 2(4): 617-626. [19] 李孟涛. 基于发根农杆菌的桃遗传转化体系构建及在香气物质合成基因功能研究上的应用[D].杭州:浙江大学,2023. [20] WANG M, QIN Y Y, WEI N N, et al.Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis[J]. Front Plant Sci, 2023, 14: 1293374. [21] GIESBRECHT M R H, BERZUNZA E A, HERNáNDEZ G G, et al. Genetic transformation of the tropical vine Pentalinon andrieuxii (Apocynaceae) via Agrobacterium rhizogenes produces plants with an increased capacity of terpenoid production[J]. In vitro cellular & developmental biology-plant, 2020, 57(1): 1-9. [22] NAGLE M, DéJARDIN A, PILATE G, et al. Opportunities for Innovation in Genetic Transformation of Forest Trees[J]. Front Plant Sci, 2018, 9: 1443. [23] LIU L, QU J H, WANG C Y, et al.An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion[J]. Plant Biotechnol J, 2024, 22(8): 2093-2103. [24] CAO X S, XIE H T, SONG M L, et al.Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J].The innovation, 2023, 4(1): 100345. [25] CAO X S, XIE H T, SONG M L, et al.Simple method for transformation and gene editing in medicinal plants[J]. J Integr Plant Biol, 2024, 66(1): 17-19. [26] LU J H, LI S S, DENG S, et al.A method of genetic transformation and gene editing of succulents without tissue culture[J]. Plant Biotechnol J, 2024, 22(7): 1981-1988. [27] SANFORD J C, KLEIN T M, WOLF E D, et al.Delivery of substances into cells and tissues using a particle bombardment process[J]. Particulate science and technology, 1987, 5(1): 27-37. [28] ZHANG D W, DAS D B, RIELLY C D.Potential of microneedle-assisted micro-particle delivery by gene guns: A review[J]. Drug Deliv, 2014, 21(8): 571-587. [29] MOUSAVI M, MOUSAVI A, HABASHI A A, et al.Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment[J]. Mol Biol Rep,2014, 41(12): 8185-8194. [30] 张晓芬,王国云,杜和山,等.基因枪法介导的辣椒花药遗传转化技术研究[J].核农学报, 2018, 32(11): 2081-2087. [31] VIDAL J R, KIKKERT J R, DONZELLI B D, et al.Biolistic transformation of grapevine using minimal gene cassette technology[J]. Plant Cell Rep, 2006, 25(8): 807-814. [32] WANG B, HUANG J, ZHANG M L, et al.Carbon dots enable efficient delivery of functional DNA in plants[J]. ACS Appl Bio Mater, 2020, 3(12): 8857-8864. [33] ZHANG H, CAO Y H, XU D W, et al.Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown[J]. Nano Lett, 2021, 21(13): 5859-5866. [34] THAGUN C,CHUAH J A,NUMATA K.Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides[J]. Adv Sci(Weinh),2019,6(23):1902064. [35] ZHAO X, MENG Z G, WANG Y, et al.Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nat Plants, 2017, 3(12): 956-964. [36] 赵翔. 基于四氧化三铁纳米磁转化系统的花粉介导棉花转基因技术[D].北京:中国农业科学院,2015. [37] RUF S, BOCK R.Loopholes for smuggling DNA into pollen[J]. Nat Plants, 2017, 3(12): 918-919. [38] 王善娥. 观赏用柳树无性系再生体系的建立及其遗传转化的研究[D].济南:山东师范大学,2007. [39] 刘源. ‘鲁旱柳1号’组培快繁及发根农杆菌介导的遗传转化体系的建立[D].山东泰安:山东农业大学,2023. [40] LYYRA S, LIMA A, MERKLE S A.In vitro regeneration of Salix nigra from adventitious shoots[J]. Tree Physiol, 2006, 26(7): 969-975. [41] YANG J, YI J, YANG C P, et al.Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds[J]. Tree Physiol, 2013, 33(6): 628-639. [42] 张敏. 中国沙棘植株再生与移栽技术体系的优化和遗传转化初探[D].呼和浩特:内蒙古农业大学,2023. [43] 赵蕊. 油茶原生质体瞬时表达体系的建立及愈伤组织遗传转化研究[D].长沙:中南林业科技大学,2023. [44] 杨恩让, 刘晓敏, 解庆. 山桐子离体培养植株再生[J].西北林学院学报, 2013, 28(6): 95-98. [45] 王琰. 紫薇不同花色种质资源的杂交育种与遗传转化体系的建立[D].武汉:华中农业大学,2024. [46] 刘昱. 葡萄体细胞胚的诱导及VvACS1基因对葡萄的遗传转化[D].郑州:河南农业大学,2018. [47] 邓雅婷. 西番莲种质资源离体保存与遗传转化研究[D].福州:福建农林大学,2024. [48] 王梦真,何锐杰,邓雅婷,等.百香果高频再生及遗传转化体系的建立[J/OL].分子植物育种,1-9[2025-04-01].https://link.cnki.net/urlid/46.1068.s.20240402.1740.016. [49] 张晓琳,纵丹,李嘉其,等.滇杨组织培养再生及遗传转化体系建立[J].浙江农林大学学报, 2024, 41(2): 314-321. [50] ZHAO X Y, SU Y H, CHENG Z J, et al.Cell fate switch during in vitro plant organogenesis[J]. J Integr Plant Biol, 2008, 50(7):816-824. [51] YAO W T, KONG L L, LEI D Y, et al.An effective method for establishing a regeneration and genetic transformation system for Actinidia arguta[J]. Front Plant Sci, 2023, 14: 1204267. [52] SHU H Y, ZHANG Y, HE C Y, et al.Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum[J]. Front Plant Sci, 2022, 13: 1025497. [53] 唐靖雯,王宁,伍程程,等.白花玉石籽石榴遗传转化体系的建立[J].果树学报,2024,41(12):2621-2633. [54] 杨松,宋学勤,赵树堂,等.‘44号’抗虫黑杨基于根段组培再生和遗传转化体系的建立[J].林业科学研究, 2024, 37(5): 74-84. [55] 唐燕. 红掌多倍体诱导及遗传转化体系的构建[D].山东泰安:山东农业大学,2023. [56] 吴亚男. 红松胚性愈伤组织遗传转化体系的建立[D].哈尔滨:东北林业大学,2024. [57] WEI R, ZHANG W E, LI C X, et al.Establishment of Agrobacterium-mediated transformation system to Juglans sigillata Dode ‘Qianhe-7’[J]. Transgenic Res, 2023, 32(3): 193-207. [58] 苑忠杰. RNAi技术在柠檬抗CYVCV育种中的应用及柠檬遗传转化体系的建立[D].重庆:西南大学,2024. [59] 刘牧青. 葡萄VyDHN1基因对西拉葡萄愈伤组织抗逆性的调控作用[D].济南:齐鲁工业大学,2024. [60] 王冬月,王如月,孙茂桐,等.‘窄冠白杨1号’遗传转化体系建立与抗虫基因转化[J].植物研究, 2024, 44(3): 361-369. [61] IKEUCHI M, IWASE A, RYMEN B, et al.Wounding triggers callus formation via dynamic hormonal and transcriptional changes[J]. Plant Physiol, 2017, 175(3): 1158-1174. [62] IKEUCHI M, FAVERO D S, SAKAMOTO Y, et al.Molecular mechanisms of plant regeneration[J]. Annu Rev Plant Biol, 2019, 70: 377-406. [63] 王锦楠. 生长调节因子GRF12a和GRF12b对杨树生长发育的作用及其机理研究[D].北京:中国林业科学研究院,2020. [64] XU W J, WANG Y, XIE J B, et al.Growth-regulating factor 15-mediated gene regulatory network enhances salt tolerance in poplar[J]. Plant Physiol, 2023, 191(4): 2367-2384. [65] SNIPES S A, RODRIGUEZ K, DEVRIES A E, et al.Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription[J].PLoS Genet,2018,14(4):e1007351. [66] ZUO J R, NIU Q W, FRUGIS G, et al.The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. Plant J, 2002, 30(3): 349-359. [67] XIAO Y Q, CHEN Y L, DING Y P, et al.Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration[J]. Plant Sci, 2018, 270: 157-165. [68] 颜世萍. 苹果MdWUS基因的克隆及功能分析[D].沈阳:沈阳农业大学,2020. [69] BOUCHABKé-COUSSA O, OBELLIANNE M, LINDERME D, et al.Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro[J]. Plant Cell Rep, 2013, 32(5): 675-686. [70] 杨琳琳. 白桦WUS基因的克隆及其功能分析[D].哈尔滨:东北林业大学,2022. [71] BOUTILIER K, OFFRINGA R, SHARMA V K, et al.Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. Plant cell, 2002, 14(8): 1737-1749. [72] HEIDMANN I,DE LANGE B, LAMBALK J, et al.Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor[J]. Plant Cell Rep, 2011, 30(6): 1107-1115. [73] CHEN J,TOMES S, GLEAVE A P, et al.Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor[J]. Hortic Res, 2022, 9. [74] 肖旭. 苹果Baby Boom基因在遗传转化和体胚发生中的功能鉴定[D].山东泰安:山东农业大学,2022. [75] LOWE K, WU E, WANG N, et al.Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. Plant cell, 2016, 28(9): 1998-2015. [76] DEBERNARDI J M, TRICOLI D M, ERCOLI M F, et al.A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat Biotechnol, 2020, 38(11): 1274-1279. [77] 吴梦洁,洪家都,李芳燕,等.发根农杆菌介导的闽楠遗传转化体系构建与优化[J].核农学报, 2023, 37(8): 1516-1522. [78] 鞠琳璐. 桃非组培遗传转化体系初探[D].武汉:华中农业大学,2023. [79] 罗萍. 发根农杆菌介导的尾巨桉遗传转化体系的建立[D].北京:中国林业科学研究院,2022. [80] OKA S, TEWARY P K.Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes[J].The journal of sericultural science of Japan, 2000, 69(1): 13-19. [81] AGGARWAL D, KUMAR A, REDDY M S.Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis[J]. Acta physiologiae plantarum, 2011, 33(5): 1603-1611. [82] 王晓萍. 根癌农杆菌介导的尾巨桉DH32-29遗传转化体系的建立[D].北京:中国林业科学研究院,2022. [83] 王鹏良,姜福星,蔡玲,等.广林巨尾桉9号遗传转化体系的建立[J].林业科技开发, 2013, 27(3): 76-80. [84] DE BONDT A, EGGERMONT K, DRUART P, et al.Agrobacterium-mediated transformation of apple(Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps[J]. Plant Cell Rep, 1994, 13(10): 587-593. [85] OUYANG L J, LI L M.Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis[J]. Transgenic Res, 2016, 25(4): 441-452. [86] 关心. 中国野生华东葡萄新基因乙二醛氧化酶基因遗传转化部分葡萄的研究[D].陕西咸阳:西北农林科技大学,2010. [87] 李晓龙. ‘聊红’椿遗传转化体系的建立及果色调控相关miRNA的分离鉴定[D].山东聊城:聊城大学,2023. [88] XI J, PATEL M, DONG S, et al.Acetosyringone treatment duration affects large T-DNA molecule transfer to rice callus[J]. BMC Biotechnol, 2018, 18(1): 48. [89] CHO H, WINANS S C.VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals[J]. Proc Natl Acad Sci U S A, 2005, 102(41): 14843-14848. [90] STACHEL S E, ZAMBRYSKI P C. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens[J]. Cell, 1986, 46(3): 325-333. [91] 冯雪晶,马灵,杨爽,等.‘京枣39’愈伤组织遗传转化体系构建[J].北京林业大学学报,2024,46(10):74-80. [92] 马灵,袁轶,杨爽,等.‘京枣39’叶片遗传转化体系的建立[J].华中农业大学学报,2025,44(1):43-49. [93] 邢明佳. 根癌农杆菌介导的山梨和‘康弗伦斯’遗传转化体系优化[D].山东泰安:山东农业大学,2024. [94] 姜洋. 大青杨PuCBF遗传转化基础及功能验证[D].哈尔滨:东北林业大学,2017. [95] 王森,谢碧霞.梨果肉褐变机理和防褐变技术的研究[J].北方果树,2004(5):4-7. [96] WEN Y T, LIANG Y Q, CHAI W M, et al.Effect of ascorbic acid on tyrosinase and its anti-browning activity in fresh-cut Fuji apple[J]. J Food Biochem, 2021, 45(12): e13995. [97] 王俊燚,董金金,刘伟,等.银杏愈伤组织生长、褐化与黄酮积累研究[J].生物技术通报, 2019, 35(2): 16-22. [98] 何九军,赵淑玲,朱迎春,等.香玲核桃组培褐化控制的研究[J].农业灾害研究, 2018, 8(5): 10-11. [99] 谢贝阳. 苹果茎段离体培养及激素调控生根的研究[D].郑州:河南农业大学,2018. [100] 罗丽华. 板栗组织培养及褐变研究[D].长沙:中南林学院,2004. [101] SU Y, WEI M, GUO Q S, et al.Investigating the relationships between callus browning in Isatis indigotica Fortune, total phenol content, and PPO and POD activities[J]. Plant cell, tissue and organ culture(PCTOC), 2023, 155(1): 175-182. [102] 黄丽辉,叶冬梅,覃换玲,等.‘小果甜柿’组织培养中的抗褐化研究[J].陕西农业科学, 2024, 70(3): 14-18. [103] 王小妹,吴霞,张禹欣,等.福建柏愈伤组织诱导与抗褐化研究[J].西北农林科技大学学报(自然科学版), 2024, 52(5): 57-68. [104] 丁文文. 新疆薄壳核桃组织培养技术研究[D].新疆阿拉尔:塔里木大学,2023. [105] 丰锋. 龙眼组织培养褐变抑制研究[J].中国南方果树, 2004(6): 49-51. [106] 罗丽华,陈建华,苏冬梅,等.板栗组培过程中褐变研究初探[J].经济林研究,2003(4):30-31, 44. [107] ZHANG H, DEMIRER G S, ZHANG H, et al.DNA nanostructures coordinate gene silencing in mature plants[J]. Proc Natl Acad Sci U S A, 2019, 116(15): 7543-7548. |