湖北农业科学 ›› 2025, Vol. 64 ›› Issue (9): 185-194.doi: 10.14088/j.cnki.issn0439-8114.2025.09.030

• 信息工程 • 上一篇    下一篇

双目视觉的农田场景同步定位与稠密建图

方伟舟, 孟小艳, 周洪, 丁晓晨   

  1. 新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
  • 收稿日期:2025-02-14 出版日期:2025-09-25 发布日期:2025-10-28
  • 通讯作者: 孟小艳(1978-),女,新疆昌吉人,副教授,博士,主要从事知识图谱、人工智能研究,(电子信箱)mxy@xjau.edu.cn。
  • 作者简介:方伟舟(1998-),男,河南商丘人,硕士,主要从事计算机视觉研究,(电子信箱)1243186607@qq.com。
  • 基金资助:
    科技创新2030—“新一代人工智能”重大项目(2022ZD0115805); 新疆维吾尔自治区重大科技专项(2022A02011)

Simultaneous localization and dense mapping for farmland scenes with stereo vision

FANG Wei-zhou, MENG Xiao-yan, ZHOU Hong, DING Xiao-chen   

  1. College of Computer and Information Engineering/Engineering Research Center of Intelligent Agriculture, Ministry of Education/Xinjiang Engineering Research Center for Agricultural Informatization, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2025-02-14 Published:2025-09-25 Online:2025-10-28

摘要: 为应对农田场景中动态光照和低纹理环境对传统视觉SLAM(同步定位与建图)造成的位姿漂移与建图退化问题,提出一种基于双目视觉的同步定位与稠密重建方法。首先,在跟踪线程中引入线特征,结合点特征进行融合匹配,以增强系统在低纹理和动态光照变化环境下的鲁棒性,提升特征提取与跟踪的稳定性。其次,在原有SLAM架构的基础上,增加稠密建图线程,利用基于深度学习的立体匹配网络生成高精度视差图,有效克服无纹理、遮挡及边缘区域的深度估计误差。通过点云配准、点云融合及点云滤波构建高质量的稠密点云地图,并在全局BA优化后进一步提升地图精度。结果表明,在EuRoC、KITTI Odometry数据集上,StereoDenseSLAM(SDSLAM)算法的平均绝对轨迹误差(ATE)分别为0.1121、2.137,均低于ORB-SLAM2算法、ORB-SLAM3算法、PL-SLAM算法,表明其定位精度得到明显提升。在自建数据集上,SDSLAM算法实现了较高精度的稠密重建效果,能够很好地反映真实农田场景信息,满足农田场景的三维稠密点云地图的构建需求。

关键词: 双目视觉, 农田场景, 同步定位, 稠密建图, SLAM

Abstract: To address the pose drift and mapping degradation caused by dynamic illumination and low-texture environments in farmland scenes for traditional visual SLAM(simultaneous localization and mapping), a stereo vision-based simultaneous localization and dense mapping method was proposed. First, line features were introduced into the tracking thread and combined with point features for fusion matching to enhance the system’s robustness in low-texture and dynamic illumination environments and improve the stability of feature extraction and tracking. Second, based on the original SLAM architecture, a dense mapping thread was added to generate high-precision disparity maps using a deep learning-based stereo matching network, effectively overcoming depth estimation errors in textureless, occluded, and edge regions. High-quality dense point cloud maps were constructed through point cloud registration, point cloud fusion, and point cloud filtering, and the map accuracy was further improved after global bundle adjustment (BA) optimization.Results showed that on the EuRoC and KITTI Odometry datasets, the average absolute trajectory error (ATE) of the StereoDenseSLAM (SDSLAM) algorithm was 0.1121 and 2.137, respectively, which were lower than those of ORB-SLAM2, ORB-SLAM3, and PL-SLAM algorithms, indicating a significant improvement in localization accuracy. On the self-built dataset, the SDSLAM algorithm achieved high-precision dense reconstruction results, which well reflected real farmland scene information and met the requirements for constructing 3D dense point cloud maps in farmland scenes.

Key words: stereo vision, farmland scenes, simultaneous localization, dense mapping, SLAM

中图分类号: