湖北农业科学 ›› 2020, Vol. 59 ›› Issue (21): 174-176.doi: 10.14088/j.cnki.issn0439-8114.2020.21.038

• 信息工程 • 上一篇    下一篇

基于大数据技术加料机预警系统的研制

鲁纪平, 张忠恕   

  1. 红塔辽宁烟草有限责任公司营口卷烟厂,辽宁 营口 115007
  • 收稿日期:2020-03-06 出版日期:2020-11-10 发布日期:2020-12-21
  • 作者简介:鲁纪平(1970-),男,山东文登人,工程师,主要从事卷烟生产工作,(电话)13941756522(电子信箱)253768579@qq.com。

Development of early warning system for feeder based on big data technology

LU Ji-ping, ZHANG Zhong-shu   

  1. Yingkou Cigarette Factory, Hongta Liaoning Tobacco Co., Ltd., Yingkou 115007, Liaoning,China
  • Received:2020-03-06 Online:2020-11-10 Published:2020-12-21

摘要: 通过润叶加料工序加料系统故障分析发现,加料系统出现故障前,由于故障表征不明显,具有瞬间跳变性,没有被相关人员捕捉到,导致设备运行状态变差,最终造成加料系统故障。运用大数据对原有加料机加料模块的设备管理进行归纳和总结,从而建立预警模型,研发一套智能的设备预警系统,及时、快速地找到故障点位,实现精准预测维修。结果表明,诊断故障点位时间可缩短为20 min,大大缩短了诊断故障点位的时间,提高了车间的生产效率。

关键词: 加料系统, 大数据技术, 预警模型建立, 诊断时间

Abstract: It can be found through the analysis of the failure of the feeding system in the process of leaf moistening and feeding,the abnormal operation of the feeding pump often occurs before the failure of the feeding system, because this parameter was not the key assessment index, and the failure symptom was not obvious, with transient jump, this phenomenon has not been caught by the relevant personnel, resulting in the gradual deterioration of the equipment operation status, resulting in the failure of the feeding system, or even the shutdown. Using big data analysis to summarize and summarize the equipment management of the original feeding module of the feeder, so as to establish the early warning model, develop an intelligent equipment early warning system, find the fault point in time and quickly, and achieve accurate prediction and maintenance. The results show that the time of fault diagnosis can be reduced to 20 minutes, which greatly shortens the time of fault diagnosis and improves the production efficiency of the workshop.

Key words: feeding system, big data technology, early warning model establishment, diagnosis time

中图分类号: