湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 257-261.doi: 10.14088/j.cnki.issn0439-8114.2024.08.043

• 智能监测 • 上一篇    下一篇

基于光谱反射率的甘薯叶片钾素营养监测与诊断

鲁燕君1, 王旭伟2, 胡继杰2, 陈少杰2, 陈玉3, 吕尊富4   

  1. 1.杭州市临安区农林技术推广中心,杭州 311399;
    2.宁波市农技推广总站,浙江 宁波 315042;
    3.杭州市临安区科学技术局,杭州 311302;
    4.浙江农林大学现代农学院/浙江省农产品品质改良技术研究重点实验室,杭州 311300
  • 收稿日期:2024-03-10 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 吕尊富(1984-),男,山东烟台人,教授,博士,主要从事智慧农业研究,(电话)13616537056(电子信箱)lvzunfu@163.com;共同通信作者,陈少杰(1979-),男,高级农艺师,主要从事粮油生产技术推广工作,(电话)0574-89385579(电子信箱)supersjc2@aliyun.com。
  • 作者简介:鲁燕君(1977-),女,浙江杭州人,农艺师,主要从事农业技术推广工作,(电话)13750869331(电子信箱)342758302@qq.com;共同第一作者,王旭伟(1975-),男,浙江宁波人,高级农艺师,主要从事旱粮技术推广研究,(电话)0574-89385582(电子信箱)1434279612@qq.com。
  • 基金资助:
    国家自然科学基金项目(32071897; 32272222); 宁波市重点项目(2022S092); 浙江省粮油产业技术项目

Monitoring and diagnosis of potassium nutrition in Ipomoea batatas leaves based on spectral reflectivity

LU Yan-jun1, WANG Xu-wei2, HU Ji-jie2, CHEN Shao-jie2, CHEN Yu3, LYU Zun-fu4   

  1. 1. Lin’an District Agricultural and Forestry Technology Promotion Center, Hangzhou 311399, China;
    2. Ningbo Agricultural Technology Promotion Station, Ningbo 315042, Zhejiang, China;
    3 Lin’an District Science and Technology Bureau of Hangzhou City, Hangzhou 311302, China;
    4. College of Advanced Agricultural Sciences/Key Laboratory of Agricultural Product Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
  • Received:2024-03-10 Published:2024-08-25 Online:2024-09-05

摘要: 以商薯19和心香 2个甘薯(Ipomoea batatas)品种为试验材料,通过设置不同梯度钾素处理测定叶片的光谱反射率,分别构建基于比值植被指数(RVI)的甘薯叶片钾含量和钾营养指数预测模型。结果表明,RVI与叶片钾含量构建的线性模型表明,RVIR1 598 nm,R1 771 nm)对甘薯叶片钾含量的预测精度较高,回归方程为y=58.601 0x-58.446(R2=0.741 4,RMSE=0.83),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾含量具有较好的预测能力(R2=0.732 4,RMSE=0.85);RVI与钾营养指数构建的线性模型表明,RVIR700 nm,R1 385 nm)对甘薯叶片钾营养指数的预测精度较高,回归方程为y=6.032 9x-0.833(R2=0.768 8,RMSE=0.15),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾营养指数具有较好的预测能力(R2=0.639 5,RMSE=0.20);利用RVI能够较好监测与诊断甘薯钾素营养。

关键词: 甘薯(Ipomoea batatas), 光谱, 反射率, 钾素营养, 监测, 诊断

Abstract: Two Ipomoea batatas varieties, Shangshu 19 and Xinxiang, were used as experimental materials. By setting different gradient potassium treatments to determine the spectral reflectance of leaves, Ipomoea batatas leaves potassium content and potassium nutrient index prediction models were constructed based on the ratio vegetation index (RVI). The results showed that the linear model constructed by RVI and potassium content in leaves showed that RVIR1 598 nm, R1 771 nm) had a high prediction accuracy for potassium content in Ipomoea batatas leaves,the regression equation was y=58.601 0x-58.446(R2=0.741 4, RMSE=0.83),using validation data to test the linear model, the model showed good predictive ability for potassium content in Ipomoea batatas leaves under different potassium fertilizer levels (R2=0.732 4, RMSE=0.85);the linear model constructed by RVI and potassium nutrition index indicated that RVIR700 nm, R1 385 nm) had a high prediction accuracy for the potassium nutrition index of Ipomoea batatas leaves,the regression equation was y=6.032 9x-0.833 (R2=0.768 8, RMSE=0.15),using validation data to test the linear model, the model showed good predictive ability for the potassium nutrient index of Ipomoea batatas leaves under different potassium fertilizer levels (R2=0.639 5,RMSE=0.20);the use of RVI could effectively monitor and diagnose potassium nutrition in Ipomoea batatas.

Key words: Ipomoea batatas, spectral, reflectivity, potassium nutrition, monitoring, diagnosis

中图分类号: