湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 267-280.doi: 10.14088/j.cnki.issn0439-8114.2024.08.045

• 智能监测 • 上一篇    下一篇

基于水文气象因子的农田生态系统碳通量预测

吴成秋1, 曹召丹2,3, 赵小二4, 吴宏宇1, 邓科1   

  1. 1.江苏省水文水资源勘测局徐州分局,江苏 徐州 221000;
    2.曲阜师范大学地理科学系,山东 日照 276800;
    3.浙江大学建筑工程学院,杭州 310058;
    4.青岛理工大学环境与市政工程学院,山东 青岛 266033
  • 收稿日期:2023-06-05 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 曹召丹(1989-),男,山东巨野人,讲师,博士,主要从事农业水资源管理研究,(电话)15852173394(电子信箱)czdcumt07@163.com。
  • 作者简介:吴成秋(1989-),男,江苏邳州人,工程师,硕士,主要从事水文与水资源监测研究,(电话)15190740737(电子信箱)wchq715@126.com。
  • 基金资助:
    国家自然科学基金资助项目(42002259)

Carbon flux prediction in farmland ecosystem based on hydrometeorological factors

WU Cheng-qiu1, CAO Zhao-dan2,3, ZHAO Xiao-er4, WU Hong-yu1, DENG Ke1   

  1. 1. Xuzhou Hydrology and Water Resources Survey Bureau of Jiangsu Province, Xuzhou 221000, Jiangsu, China;
    2. Department of Geography, Qufu Normal University, Rizhao 276800, Shandong, China;
    3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
    4. School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
  • Received:2023-06-05 Published:2024-08-25 Online:2024-09-05

摘要: 以黄河流域下游禹城农田生态系统为研究对象,采用中国通量观测研究网络(ChinaFLUX)禹城站通量塔观测的碳水通量和水文气象数据,基于特征重要性方法确定影响农田生态系统CO2交换量的主控环境因子。基于所有环境因子和主控环境因子分别构建碳通量预测的机器学习模型,采用均方误差(MSE)、平均绝对误差(MAE)和决定系数(R2)评估测试集的模型预测性能。结果表明,影响禹城农田生态系统碳通量的主控环境因子为净辐射、土壤温度、饱和水汽压亏缺、土壤含水量。与单一模型相比,集成模型具有更好的预测性能。单一模型中,MLPRegressor模型预测性能较好,R2为0.830,MSE为3.113,MAE为1.283。集成模型中,XGBRegressor模型预测性能较好,R2为0.845,MSE为2.838,MAE为1.149。采用主控环境因子与采用全部环境因子构建的机器学习模型具有相似预测性能。

关键词: 农田生态系统, 碳通量预测, 水文气象因子, 机器学习模型

Abstract: Using the carbon and water fluxes and hydrometeorological data observed by the flux tower of Yucheng Station of China Flux Observation Network (ChinaFLUX) in the lower reaches of the Yellow River Basin, the main controlling environmental factors affecting the CO2 exchange capacity of the farmland ecosystem were determined based on the feature importance method. A machine learning model for carbon flux prediction was constructed based on all environmental factors and master environmental factors, and the mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used to evaluate the model prediction performance of the test set. The results showed that, the main environmental driving factors affecting carbon flux in Yucheng agro-ecosystems were net radiation, soil temperature, vapor pressure deficit and soil water content. Compared with single models, the ensemble models had better learning and prediction performances in the testing set. Among the single models, MLPRegressor model could better predict NEE with R2 of 0.830, MSE of 3.113 and MAE of 1.283. Among the ensemble models, XGBRegressor model had better prediction performance with R2 of 0.845, MSE of 2.838 and MAE of 1.149. The machine learning models using the main four environmental driving factors had the same prediction performances as the models using all environmental factors.

Key words: farmland ecosystem, carbon flux prediction, hydrometeorological factors, machine learning models

中图分类号: