湖北农业科学 ›› 2024, Vol. 63 ›› Issue (9): 204-209.doi: 10.14088/j.cnki.issn0439-8114.2024.09.034

• 信息工程 • 上一篇    下一篇

融合注意力机制的GAN病虫害图像超分辨率重建

费加杰, 杨毅, 曾晏林, 蔺瑶, 贺壹婷, 黎强, 张圣笛   

  1. 云南农业大学大数据学院,昆明 650500
  • 收稿日期:2023-02-13 出版日期:2024-09-25 发布日期:2024-09-30
  • 通讯作者: 杨 毅(1966-),男,云南昆明人,硕士生导师,主要从事深度学习、植物病虫害防治、图形图像处理方面研究,(电话)13888222963(电子信箱)1617213828@qq.com。
  • 作者简介:费加杰(1995-),男,贵州六盘水人,在读硕士研究生,研究方向为图形图像处理,(电话)18184899528(电子信箱)354099126@qq.com。
  • 基金资助:
    云南省重大科技专项(A3032021043002)

Super-resolution reconstruction of GAN pest and disease images fused with attention mechanisms

FEI Jia-jie, YANG Yi, ZENG Yan-lin, LIN Yao, HE Yi-ting, LI Qiang, ZHANG Sheng-di   

  1. School of Big Data,Yunnan Agricultural University, Kunming 650500, China
  • Received:2023-02-13 Published:2024-09-25 Online:2024-09-30

摘要: 收集咖啡和柑橘病虫害样本图片,利用TensorFlow深度学习框架,在原始SRGAN(Super-resolution generative adversarial networks)的超分辨率重建网络里加入了注意力模块,对重建图像视觉质量和峰值信噪比(PSNR)、结构化相似性(SSIM)指标进行分析。结果表明,设计的模型和原始SRGAN模型对比之后峰值信噪比提高了2.23,结构相似性提高了7%。在细节纹理方面可以获得更好的视觉效果,重建后的图像识别准确率提高了约4.42个百分点。因此,设计的模型可以对小样本性质的植物病虫害样本进行扩充。

关键词: 超分辨率重建, 注意力机制, 病虫害, 峰值信噪比(PSNR), 结构化相似性(SSIM)

Abstract: The sample pictures of coffee and citrus pests and diseases were collected, and an attention module was added to the super-resolution reconstruction network of the original SRGAN by using TensorFlow deep learning framework. The visual quality, peak signal-to-noise ratio and structured similarity index of the reconstructed image were analyzed. The results showed that the peak signal-to-noise ratio of the designed model was improved by 2.23, and the structural similarity was enhanced by 7%, after comparing with the original SRGAN mode. Better visuals could be obtained in terms of detail texture, and the accuracy of the reconstructed image classification was improved by about 4.42 percentage points. Therefore, the model designed could be used for the expansion of samples of plant pests and diseases with small sample properties.

Key words: super-resolution reconstruction, attention mechanism, pests and diseases, peak signal-to-noise ratio (PSNR), structural similarity(SSIM)

中图分类号: