[1] FLETCHER S, MARCH A L A, ROBERTS K. Turning off the tap: How the world can end plastic pollution and create a circular economy[M]. Nairobi:United nations environment programme, 2023. [2] 高文.《中国塑料污染治理理念与实践》报告发布[N].农民日报,2022-04-29(004). [3] HORTON A A, WALTON A, SPURGEON D J, et al.Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the total environment, 2017, 586:127-141. [4] REN S Y, WANG K, ZHANG J R, et al.Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China[J]. Critical reviews in environmental science and technology, 2023, 54(7):1-24. [5] ZHANG H, GOH N S, WANG J W, et al.Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves[J]. Nature nanotechnology, 2022, 17(2): 197-205. [6] TAYLOR S E, PEARCE C I, SANGUINET K A, et al.Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots[J]. Environmental science: Nano, 2020, 7(7): 1942-1953. [7] ETXEBERRIA E, GONZALEZ P, BAROJA-FERNÁNDEZ E, et al. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells[J]. Plant signaling and behavior, 2006, 1(4):196-200. [8] LIU Y Y, GUO R, ZHANG S W, et al.Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment[J]. Journal of hazardous materials, 2022, 421:126700. [9] GONZÁLEZ-MORALES S, PARERA C A, JUÁREZ-MALDONADO A, et al. Chapter 13-The ecology of nanomaterials in agroecosystems[J]. Nanomaterials for agriculture and forestry applications, 2020, 2: 313-355. [10] LI L Z, LUO Y M, LI R J, et al.Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature sustainability, 2020, 3(11): 929-937. [11] SUN H F, LEI C L, XU J H, et al.Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants[J]. Journal of hazardous materials, 2021, 416:125854. [12] AZEEM I, NOMAN S, SADAF C, et al.Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems[J]. Plant physiology and biochemistry, 2023, 204: 108132. [13] LI L Z, LUO Y M, PEIJNENBURG W J G M, et al. Confocal measurement of microplastics uptake by plants[J]. MethodsX, 2020, 7:100750. [14] TYMPA L E, KATSARA K, MOSCHOU P N, et al.Do microplastics enter our food chain via root vegetables?A raman based spectroscopic study on Raphanus sativus[J]. Materials, 2021, 14(9):2329. [15] WANG Y, XIANG L L, WANG F, et al.Transcriptomic and metabolomic changes in lettuce triggered by microplastics-stress[J]. Environmental pollution, 2023, 320:121081. [16] GONG W W, ZHANG W, JIANG M Y, et al.Species-dependent response of food crops to polystyrene nanoplastics and microplastics[J]. Science of the total environment, 2021, 796:148750. [17] 陈赋秋雪,唐思琪,袁昊,等.聚苯乙烯微塑料对典型农作物种子发芽和幼苗生长的影响[J]. 生态环境学报,2022,31(12):2382-2392. [18] ZANTIS L J, ROMBACH A, ADAMCZYK S, et al.Species-dependent responses of crop plants to polystyrene microplastics[J]. Environmental pollution, 2023, 335:122243. [19] DE SILVA Y, RAJAGOPALAN U M, KADONO H, et al.Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth[J]. Chemosphere, 2022, 303(2):135162. [20] LOZANO Y M, CAESARIA P U, RILLIG M C.Microplastics of different shapes increase seed germination synchrony while only films and fibers affect seed germination velocity[J]. Frontiers in environmental science, 2022, 10:1017349. [21] 张彦,窦明,邹磊,等.不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J].中国环境科学, 2021,41(8):3867-3877. [22] 白雪. 三种微塑料对大豆生长及生理生化特性影响的研究[D].太原:太原科技大学,2023. [23] 郭娜,刘剑秋.植物作物生物量研究概述(综述)[J].亚热带作物科学, 2011, 40(2): 83-88. [24] COLZI I, RENNA L, BIANCHI E, et al.Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L.[J]. Journal of hazardous materials, 2022, 423(7):127238. [25] 黄献培,向垒,郭静婕,等.聚苯乙烯微球对菜心种子及幼苗的毒性效应[J].农业环境科学学报, 2021, 40(5): 926-933. [26] WANG Q L, FENG X Y, LIU Y Y, et al.Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics[J]. Journal of hazardous materials, 2023, 459:132142. [27] WECKX J, CLIJSTERS H.Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper[J]. Physiologia plantarum, 1996, 96(3): 506-512. [28] ZHANG C, YUE N, LI X H, et al.Potential translocation process and effects of polystyrene microplastics on strawberry seedlings[J]. Journal of hazardous materials, 2023, 449:131019. [29] LI Z X, LI R J, LI Q F, et al.Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 2020, 255:127041. [30] CUI M, YU S G, YU Y F, et al.Responses of cherry radish to different types of microplastics in the presence of oxytetracycline[J]. Plant physiology and biochemistry, 2022, 191:1-9. [31] 李嘉,喻雨霏,崔敏.生物炭对设施土壤中聚氯乙烯微塑料植物毒性的影响研究[J].生态与农村环境学报, 2023, 39(5): 617-624. [32] LI Y, FENG H Y, XIAN S T, et al.Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.)[J]. Plant physiology and biochemistry, 2023, 203:108065. [33] LI Z X, LI Q F, LI R J, et al.Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution[J]. Environmental science and pollution research, 2020, 27(24): 30306-30314. [34] SUN H R, SHI Y L, ZHAO P, et al.Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils[J]. Science of the total environment, 2023, 868:161557. [35] GAO M L, LIU Y, SONG Z G.Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort)[J]. Chemosphere,2019, 237:124482. [36] LI R J, CHEN T, LI L Z, et al.Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology[J]. Journal of hazardous materials,2023,456:131675. [37] DONG Y M, SONG Z G, LIU Y, et al.Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality[J]. Environmental pollution, 2021, 278:116871. [38] LI Z Y, ZENG X L, SUN F H, et al.Physiological analysis and transcriptome profiling reveals the impact of microplastic on melon (Cucumis melo L.) seed germination and seedling growth[J]. Journal of plant physiology, 2023, 287:154039. [39] YANG M, HUANG D Y, TIAN Y B, et al.Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.)[J]. Ecotoxicology and environmental safety, 2021, 222:112480. [40] PIGNATTELLI S, ANDREA B, MONIA M.Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the total environment, 2020, 727:138609. [41] 周颖,蒋文婷,刘训悦,等.低密度聚乙烯微塑料对空心菜生长和生理特征的影响[J].环境科学, 2023,44(7):4170-4178. [42] MAITY S, ANKIT C, RAJKUMAR G, et al.Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L.[J]. Journal of hazardous materials, 2020, 385: 121560. [43] ZHANG Q G, ZHAO M S, MENG F S, et al.Effect of Polystyrene microplastics on rice seed germination and antioxidant enzyme activity[J]. Toxics, 2021, 9(8):179. [44] WU X, HOU HJ, LIU Y, et al.Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study[J]. Journal of hazardous materials, 2022, 422:126834. [45] 江俊涛,陈宏伟,阎薪竹,等.聚丙烯微塑料添加对大豆和花生生长及生理生态特征的影响[J].农业环境科学学报, 2023, 42(4):761-768. [46] LIU Y Y, XU F J, DING L P, et al.Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling[J]. Journal of hazardous materials, 2023, 443:130384. [47] LI Y J, LIN X L, WANG J, et al.Mass-based trophic transfer of polystyrene nanoplastics in the lettuce-snail food chain[J]. Science of the total environment, 2023, 897:165383. [48] WANG Y M, QIAN X Y, CHEN J, et al.Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the “lettuce-snail” food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce[J]. Science of the total environment, 2023, 892:164799. [49] KALMPOURTZIDOU A, EILANDER A, TALSMA E F.Global vegetable intake and supply compared to recommendations: A systematic review[J]. Nutrients, 2020, 12(6):1558. [50] YANG Y X, XIE E Z H, DU Z Y, et al. Detection of various microplastics in patients undergoing cardiac surgery[J]. Environmental science and technology, 2023, 57(30): 10911-10918. [51] RAGUSA A, SVELATO A, SANTACROCE C, et al.Plasticenta: First evidence of microplastics in human placenta[J]. Environment international, 2021, 146:106274. [52] WU D, FENG Y D, WANG R, et al.Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of advanced research, 2023, 49:141-150. [53] LUQMAN A, NUGRAHAPRAJA H, WAHYUONO R A, et al.Microplastic contamination in human stools, foods, and drinking water associated with Indonesian Coastal population[J]. Environments, 2021, 8(12):138. [54] AMATO-LOURENÇO F,CARVALHO-OLIVEIRA R,RIBEIRO G,et al. Presence of airborne microplastics in human lung tissue[J]. Journal of hazardous materials, 2021, 416:126124. |