湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 66-71.doi: 10.14088/j.cnki.issn0439-8114.2024.08.012

• 生产生长模型 • 上一篇    下一篇

基于Landsat 8和机器学习的塔城地区草地地上生物量估测模型

杨延晓1a, 曹姗姗2, 李全胜1a, 张鲜花1b, 孙伟2   

  1. 1.新疆农业大学,a.计算机与信息工程学院;b.草业学院,乌鲁木齐 830052;
    2.中国农业科学院农业信息研究所,北京 100081
  • 收稿日期:2024-01-17 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 张鲜花(1978-),女,新疆呼图壁人,教授,博士,主要从事草地资源与生态研究,(电子信箱)zxh@xjau.edu.cn。
  • 作者简介:杨延晓(1996-),男,山东聊城人,在读硕士研究生,研究方向为农业信息化,(电话)18140993510(电子信箱)2645835163@qq.com;孙 伟(1978-),男,山东海阳人,研究员,博士,主要从事农林时空信息智能分析研究,(电子信箱)sunwei02@caas.cn。
  • 基金资助:
    国家自然科学基金项目(32271880; 31860180); 新疆农业大学2023年度研究生科研创新项目(XJAUGRI2023030)

Estimation model of above-ground biomass of grassland in Tarbagatay Prefecture based on Landsat 8 and machine learning

YANG Yan-xiao1a, CAO Shan-shan2, LI Quan-sheng1a, ZHANG Xian-hua1b, SUN Wei2   

  1. 1a. College of Computer and Information Engineering; 1b. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China;
    2. Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-01-17 Published:2024-08-25 Online:2024-09-05

摘要: 以新疆塔城地区为研究区,利用植被指数、气象数据、地形数据作为自变量,结合研究区样地实测生物量数据,分析并比较K近邻回归(KNN)、多元线性回归(MLR)、梯度提升决策树(GBDT)和随机森林回归(RF)和极端梯度提升(XGBoost)5种机器学习模型,进而分析并比较采用投票回归器(Voting regressor)和堆叠(Stacking)方法构建的2种集成学习模型的估测精度。结果表明,基于Stacking集成学习模型性能最优,R2达0.764,RMSEMAE分别为23.29 g/m2和16.8 g/m2,进而利用最优模型进行草地地上生物量(Above ground biomass, AGB)反演制图。

关键词: 草地地上生物量, Landsat 8, 遥感影像, 机器学习, 估测模型, 新疆塔城地区

Abstract: Taking Tarbagatay Prefecture of Xinjiang as the study area, using vegetation index, meteorological data and terrain data as independent variables, combined with the measured biomass data of sample plots in the study area, five machine learning models including k-nearest neighbors regression (KNN), multiple linear regression (MLR), gradient boosting decision tree (GBDT), random forest regression (RF) and Gradient Boosting Decision Tree (GBDT) were analyzed and compared, as well as two ensemble learning models constructed using voting regressor and stacking methods. The results showed that the stacking ensemble learning model had the best performance, with R2 of 0.764, RMSE and MAE of 23.29 g/m2 and 16.8 g/m2, respectively. The optimal model was then used to invert and map above-ground biomass (AGB) of grassland.

Key words: above-ground biomass (AGB) of grassland, Landsat 8, remote sensing image, machine learning, estimation model, Tarbagatay Prefecture, Xinjiang

中图分类号: