湖北农业科学 ›› 2025, Vol. 64 ›› Issue (8): 17-23.doi: 10.14088/j.cnki.issn0439-8114.2025.08.003

• 遥感图像识别 • 上一篇    下一篇

基于机器视觉技术的辣椒果实炭疽病病害分级方法研究

邹玮, 岳延滨, 李莉婕, 陈维榕, 韩威, 朱存洲   

  1. 贵州省农业科技信息研究所,贵阳 550006
  • 收稿日期:2025-04-02 出版日期:2025-08-25 发布日期:2025-09-12
  • 作者简介:邹 玮(1997-),女,贵州贵阳人,实习研究员,主要从事图像处理、植物表型等研究,(电话)15108506780(电子信箱)171465192@qq.com。
  • 基金资助:
    贵州省农业科学院青年基金项目(黔农科一般基金[2024]25号); 贵州省科技计划项目(黔科合支撑[2021]一般173)

Research on anthracnose disease grading method for pepper fruits based on machine vision technology

ZOU Wei, YUE Yan-bin, LI Li-jie, CHEN Wei-rong, HAN Wei, ZHU Cun-zhou   

  1. Guizhou Agricultural Science and Technology Information Institute,Guiyang 550006,China
  • Received:2025-04-02 Published:2025-08-25 Online:2025-09-12

摘要: 针对传统辣椒(Capsicum annuum L.)病害分级的主观性强、检测效率低等问题,以感染炭疽病的辣椒果实为研究对象,提出基于机器视觉的语义分割模型,实现辣椒果实炭疽病的自动化快速分级、识别。在密闭环境下模拟太阳光照,采集不同辣椒品种的健康果实及4个病害等级的图像,利用主成分分析方法对图像冗余特征进行降维,得到累计贡献率为95%的3个颜色特征,分别为Cb、Cr、R。对模型1(决策树)、模型2(朴素贝叶斯)、模型3(SVM)、模型4(KNN)进行训练,模型1(决策树)训练时间较短、精确率最高,将其作为辣椒炭疽病病害分级的最优预测模型,该模型对机器性能要求较低,且生成模型的内存占用较小,便于后续边缘化部署。模型1(决策树)对辣椒果实和病斑的识别精确率分别为90.3%~98.2%和75.3%~80.7%,对辣椒炭疽病病害分级的召回率为73.3%~93.3%,其中对健康辣椒(0级)的识别召回率均高于90.0%。模型1(决策树)的预测结果与人工标注真实值在病害各等级上具有高度一致性,验证了该模型在自动化病害监测系统中的适用性,可替代人工目视分级方法。

关键词: 辣椒(Capsicum annuum L.)果实, 机器视觉技术, 炭疽病, 病害分级

Abstract: To address the issues of strong subjectivity and low detection efficiency in traditional pepper (Capsicum annuum L.) disease grading methods, this study proposed a machine vision-based semantic segmentation model for automated rapid grading and identification of anthracnose-infected pepper fruits.Under controlled enclosed environments,sunlight was simulated, and images of healthy fruits and four disease severity levels across different pepper varieties were collected. Principal component analysis was employed to reduce redundant image features, extracting three key color components (Cb, Cr, R) with a cumulative contribution rate of 95%. Model 1 (Decision Tree), model 2 (Naive Bayes), model 3 (SVM), and model 4 (KNN) were trained. Model 1 (Decision Tree) demonstrated the shortest training time and highest precision, establishing it as the optimal prediction model for anthracnose disease grading. It required low computational resources and occupied minimal memory, facilitating future edge deployment. Model 1 achieved precision rates of 90.3%~98.2% for pepper fruits and 75.3%~80.7% for disease spots. Its recall rate for anthracnose disease grading was 73.3%~93.3%, with the recall rate for healthy peppers (Level 0) exceeding 90.0%. The prediction results of model 1 showed high consistency with manual annotations across all disease levels, verifying its applicability in automated disease monitoring systems as a replacement for manual visual grading methods.

Key words: pepper (Capsicum annuum L.) fruit, machine vision technology, anthracnose, disease grading

中图分类号: