湖北农业科学 ›› 2025, Vol. 64 ›› Issue (8): 10-16.doi: 10.14088/j.cnki.issn0439-8114.2025.08.002

• 遥感图像识别 • 上一篇    下一篇

基于改进YOLOv8的轻量化水稻病虫害识别模型研究

李鹏飞, 曾靖   

  1. 长江大学经济与管理学院,湖北 荆州 434023
  • 收稿日期:2024-12-09 出版日期:2025-08-25 发布日期:2025-09-12
  • 通讯作者: 曾 靖(1972-),女,湖北荆州人,副教授,主要从事智慧农业研究,(电话)15171130050(电子信箱)Zengjing0477@126.com。
  • 作者简介:李鹏飞(1987-),男,湖北仙桃人,在读硕士研究生,研究方向为农业可持续发展,(电话)13789910161(电子信箱)1597781405@qq.com;
  • 基金资助:
    国家自然科学基金面上项目(62077018)

Research on a lightweight rice pests and diseases recognition model based on the improved YOLOv8

LI Peng-fei, ZENG Jing   

  1. Economics and Management School, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2024-12-09 Published:2025-08-25 Online:2025-09-12

摘要: 在YOLOv8模型的基础上,同时引入ShuffleNetv2模块和Conv_MaxPool模块,构建改进YOLOv8模型(YOLOv8-ShuffleNetv2-Conv_MaxPool)。通过在YOLOv8模型中集成ShuffleNetv2模块和Conv_MaxPool模块,改进YOLOv8模型在保持轻量化的同时,明显提升了水稻病虫害检测的综合性能,有效降低了误检率和漏检率。改进YOLOv8模型在多个数据集上表现出色,进一步验证了其鲁棒性和泛化能力。消融试验表明,在自建数据集中,相较于YOLOv8模型,改进YOLOv8模型的准确率、精确率、召回率、F1得分分别提高了3.73、3.56、3.78、3.73个百分点,参数量仅为24.80 MB。在Coco128数据集中,改进YOLOv8模型表现最佳,各项指标均在88.00%左右,明显优于YOLOv8模型、YOLOv8-ShuffleNetv2模型、YOLOv8-Conv_MaxPool模型。该模型能有效实现实际生产环境中水稻病虫害的快速准确识别。

关键词: 水稻病虫害, 改进YOLOv8模型, 轻量化, 识别模型

Abstract: Based on the YOLOv8 model, the ShuffleNetv2 module and the Conv_MaxPool module were introduced simultaneously to construct the improved YOLOv8 model (YOLOv8-ShuffleNetv2-Conv_MaxPool). By integrating the ShuffleNetv2 module and the Conv_MaxPool module into the YOLOv8 model, the improved YOLOv8 model significantly enhanced the comprehensive performance of rice pests and diseases detection while maintaining its lightweight design, effectively reducing both the false detection rate and the missed detection rate. The improved YOLOv8 model demonstrated excellent performance across multiple datasets, further validating its robustness and generalization ability. Ablation studies demonstrated that, on the custom dataset, compared to the original YOLOv8 model, the improved YOLOv8 model achieved increases of 3.73 percentage points in accuracy, 3.56 percentage points in precision, 3.78 percentage points in recall, and 3.73 percentage points in F1-score, while maintaining a parameter size of only 24.80 MB. On the Coco128 dataset, the improved YOLOv8 model performed the best, with all key metrics averaging approximately 88.00%, significantly outperforming the original YOLOv8 model, the YOLOv8-ShuffleNetv2 model, and the YOLOv8-Conv_MaxPool model. This model effectively enabled rapid and accurate recognition of rice pests and diseases in practical production environments.

Key words: rice pests and diseases, improved YOLOv8 model, lightweight design, recognition model

中图分类号: