[1] 王瑞森,徐亦成,张海鹏,等.嘉兴市油菜生产现状与发展对策[J].浙江农业科学,2023, 64(12): 2867-2871. [2] 潘浪,刘敏,刘伟堂,等.我国杂草科学学科发展现状与展望[J].植物保护,2023,49(5):295-302. [3] 李彧,余心杰,郭俊先.基于全卷积神经网络方法的玉米田间杂草识别[J].江苏农业科学,2022,50(6):93-100. [4] 胡炼,刘海龙,何杰,等.智能除草机器人研究现状与展望[J].华南农业大学学报,2023,44(1): 34-42. [5] 靳文停,周成,马浏轩,等.有机稻田株间目标识别及机械除草技术综述[J].农机化研究,2022,44(8):9-14. [6] 张锦伟,梁茜,孙建好,等.河西走廊玉米与豆科作物间作田化学除草及对作物安全性的研究[J].植物保护,2023,49(3):338-347. [7] 何义川,汤智辉,李光新,等.葡萄园除草技术研究现状与发展趋势[J].中国农机化学报,2018,39(9):34-37. [8] HAMUDA E,GINLEY M B,GLAVIN M, et al.Automatic crop detection under field conditions using the HSV colour space and morphological operations[J].Computers and electronics in agriculture,2017,133:97-107. [9] SHARPE S M,SCHUMANN A W,BOYD N S.Goosegrass detection in strawberry and tomato using a convolutional neural network[J].Scientific reports,2020,10(1):9548. [10] CHO S I, LEE D S, JEONG J Y.AE-automation and emerging technologies: Weed-plant discrimination by machine vision and artificial neural network[J]. Biosystems engineering,2002,83(3):275-280. [11] 樊湘鹏,周建平,许燕,等.基于优化Faster R-CNN的棉花苗期杂草识别与定位[J].农业机械学报,2021,52(5):26-34. [12] 侯雨,曹丽英,丁小奇,等.基于边缘检测和BP神经网络的大豆杂草识别研究[J].中国农机化学报,2020,41(7):185-190. [13] LYDIA E, KIN Y H,SAMUEL B, et al.High speed crop and weed identification in lettuce fields for precision weeding[J].Sensors,2020,20(2):455. [14] WANG W J,HE M L, WANG X H, et al.Sewing gesture image detection method based on improved SSD model[J].Electronics letters,2021,57(8):321-323. [15] PEI H T,SUN Y Q,HUANG H, et al.Weed detection in maize fields by UAV images based on crop row preprocessing and improved YOLOv4[J].Agriculture,2022,12(7):975-975. [16] 亢洁,刘港,郭国法.基于多尺度融合模块和特征增强的杂草检测方法[J].农业机械学报,2022,53(4):254-260. [17] GALLO I,REHMAN A U,DEHKORDI R H, et al.Deep object detection of crop weeds: Performance of YOLOv7 on a real case dataset from UAV images[J].Remote sensing,2023,15(2):539-540. [18] YIN K,JIA J C,GAO X, et al.Supernovae detection with fully convolutional one-stage framework[J].Sensors,2021,21(5):1926-1928. [19] ZHU H B,ZHANG Y Y,MU D L, et al.Research on improved YOLOx weed detection based on lightweight attention module[J].Crop protection,2024,177:106563-106565. [20] FAN X P,SUN T,CHAI X J, et al.YOLO-WDNet: A lightweight and accurate model for weeds detection in cotton field[J].Computers and electronics in agriculture,2024,225:109317. [21] WANG X H,WANG Q J,QIAO Y C, et al.Precision weed management for straw-mulched maize field: Advanced weed detection and targeted spraying based on enhanced YOLOv5s[J].Agriculture,2024,14(12):2134-2134. [22] LI X X,CAI M R,TAN X J, et al.An efficient transformer network for detecting multi-scale chicken in complex free-range farming environments via improved RT-DETR[J].Computers and electronics in agriculture,2024,224:109160. [23] LIU M G,WANG H F,DU L Y,et al.Bearing-DETR: A lightweight deep learning model for bearing defect detection based on RT-DETR[J].Sensors,2024,24(13):4262. [24] 冯向萍,杜晨,李永可,等.基于改进Detection Transformer的棉花幼苗与杂草检测模型研究[J].计算机与数字工程,2024,52(7):2176-2182. [25] 吕述杭,于营,徐金辉.DETR-Maritime模型:海上救援无人机小目标检测研究[J].互联网周刊,2024(5):34-36. [26] 胡继文,张国梁,沈明哲,等.面向松木表面缺陷检测的改进RT-DETR模型[J].农业工程学报,2024,40(7):210-218. [27] 姜香菊,王瑞彤,马彦鸿.基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测[J].电工技术学报,2025,40(3):842-854. |