湖北农业科学 ›› 2025, Vol. 64 ›› Issue (8): 1-9.doi: 10.14088/j.cnki.issn0439-8114.2025.08.001

• 遥感图像识别 •    下一篇

基于改进RT-DETR模型的油菜田间杂草识别研究

章磊, 冷欣, 陈佳凯, 李宗轩   

  1. 东北林业大学计算机与控制工程学院,哈尔滨 150040
  • 收稿日期:2024-12-06 出版日期:2025-08-25 发布日期:2025-09-12
  • 通讯作者: 冷 欣(1980-),女,黑龙江哈尔滨人,副教授,博士,主要从事光电检测、视觉检测等方面的研究,(电话)15945171669(电子信箱)lengxin@nefu.edu.cn。
  • 作者简介:章 磊(1999-),男,安徽铜陵人,硕士,主要从事图像识别与深度学习研究,(电话)17356204504(电子作箱)3482176401@qq.com;
  • 基金资助:
    国家自然科学基金项目(62301139)

Research on rapeseed field weed recognition based on improved RT-DETR model

ZHANG Lei, LENG Xin, CHEN Jia-kai, LI Zong-xuan   

  1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
  • Received:2024-12-06 Published:2025-08-25 Online:2025-09-12

摘要: 以油菜田中4种典型杂草(苍耳、狗尾草、藜、豚草)作为研究对象,针对杂草检测中存在的幼苗目标小、枯萎杂草特征弱、高度重叠区域识别困难等关键问题,基于RT-DETR(Region transformer DETR)模型提出一种改进的检测方法。在RT-DETR模型基础上使用渐近混合特征金字塔网络(AFPN)替代原有的CCFM (Cross-scale context fusion module),有效解决枯萎杂草因纹理模糊和特征稀疏性导致的特征分布失衡问题;在网络骨干处引入SPD-Conv模块,提升小目标杂草的特征表征能力;在主干网络末端集成CBAM(Convolutional block attention module),有效缓解低分辨率目标和遮挡情况下的特征信息丢失问题。通过系统的消融试验和对比试验验证,改进后的RT-DETR+AFPN+SPD-Conv+CBAM(RW-DETR)模型在检测精度和鲁棒性方面均展现出明显优势。RW-DETR模型对油菜田中杂草的识别精确率和平均精度均值分别达85.2%和82.5%,明显优于RT-DETR模型、Faster R-CNN模型、SSD模型、YOLOv5m模型、YOLOv8m模型。RW-DETR模型在保持实时检测性能的同时,明显提升了复杂场景下杂草的识别效果,满足现代农业对杂草检测系统的精度与效率要求。

关键词: 油菜, 改进RT-DETR模型, RT-DETR模型, 杂草识别

Abstract: Four typical weeds Xanthium strumarium,Setaria viridis, Chenopodium album,Ambrosia artemisiifoliain in rapeseed fields were taken as the research objects. Key challenges in weed detection, including small seedling targets, weak features of withered weeds, and difficulty in identifying highly overlapping areas, were addressed by proposing an improved detection method based on the RT-DETR (Region transformer DETR) model. The asymptotic feature pyramid network (AFPN) replaced the original cross-scale context fusion module (CCFM) in the RT-DETR model, effectively resolving the imbalanced feature distribution issue in withered weeds caused by blurred texture and feature sparsity. The SPD-Conv module was introduced into the backbone network to enhance the feature representation capability for small-target weeds. The convolutional block attention module (CBAM) was integrated at the end of the backbone network, effectively mitigating feature information loss under low-resolution targets and occlusion conditions. Systematic ablation experiments and comparative experiments verified that the improved RT-DETR+AFPN+SPD-Conv+CBAM (RW-DETR) model demonstrated significant advantages in both detection accuracy and robustness. The RW-DETR model achieved recognition precision and mean average precision of 85.2% and 82.5%, respectively, for weeds in rapeseed fields, significantly outperforming the RT-DETR model, Faster R-CNN model, SSD model, YOLOv5m model, and YOLOv8m model. While maintaining real-time detection performance, the RW-DETR model significantly improved weed recognition effectiveness in complex scenes, meeting the accuracy and efficiency requirements of modern agriculture for weed detection systems.

Key words: rapeseed, improved RT-DETR model, RT-DETR model, weed recognition

中图分类号: