[1] LIU X, ZHAO D, JIA W, et al.A detection method for apple fruits based on color and shape features[J]. IEEE access, 2019, 7: 67923-67933. [2] TAN W, ZHAO C, WU H.Intelligent alerting for fruit-melon lesion image based on momentum deep learning[J]. Multimedia tools and applications, 2016, 75(24): 16741-16761. [3] TIAN Y, YANG G, WANG Z, et al.Apple detection during different growth stages in orchards using the improved YOLOv3 model[J]. Computers and electronics in agriculture, 2019, 157: 417-426. [4] STEUN M, BARGOTI S, UNDERWOOD J.Image based mango fruit detection, localisation and yield estimation using multiple view geometry[J]. Sensors, 2016, 16(11): 1915. [5] YU Y, ZHANG K, YANG L, et al.Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN[J]. Computers and electronics in agriculture, 2019, 163: 104846. [6] FU L, FENG Y, ELKAMIL T, et al.Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(2): 205-211. [7] 杨千. 平菇采摘机器人目标识别与定位控制关键技术研究[D].江苏苏州:苏州大学,2020. [8] REN Z, LAM E Y, ZHAO J.Real-Time target detection in visual sensing environments using deep transfer learning and improved anchor box generation[J]. IEEE access, 2020, 8: 193512-193522. [9] 熊俊涛,郑镇辉,梁嘉恩,等.基于改进YOLOv3网络的夜间环境柑橘识别方法[J].农业机械学报,2020,51(4):199-206. [10] LIU Z, WU J, FU L, et al.Improved kiwifruit detection using pre-trained VGG16 with RGB and NIR information fusion[J]. IEEE access, 2019, 8: 2327-2336. [11] LIU Y P, YANG C H, LING H, et al.A visual system of citrus picking robot using convolutional neural networks[A].2018 5th international conference on systems and informatics (ICSAI)[C]. Nanjing,China : IEEE, 2018. 344-349. [12] REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28: 91-99. [13] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C].Las Vegas, USA : IEEE, 2016.779-788. [14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[A].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C].Vancouver,Canada:IEEE,2023.7464-7475. [15] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C].Hawaiian, USA: IEEE, 2017.4700-4708. [16] WANG C Y, LIAO H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[A].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops[C]. Seattle,USA: IEEE,2020.390-391. |