湖北农业科学 ›› 2025, Vol. 64 ›› Issue (7): 186-191.doi: 10.14088/j.cnki.issn0439-8114.2025.07.032

• 信息工程 • 上一篇    下一篇

基于改进YOLOv8模型的黄花菜花蕾识别研究

霍静琦, 崔婷婷, 薛志璐   

  1. 西安职业技术学院机电工程学院,西安 710000
  • 收稿日期:2024-11-09 出版日期:2025-07-25 发布日期:2025-08-22
  • 作者简介:霍静琦(1997-),女,山西吕梁人,助教,硕士,主要从事计算机视觉、神经网络研究,(电话)18434763641(电子信箱)hjq1135503114@163.com。

Research on daylily buds recognition based on an improved YOLOv8 model

HUO Jing-qi, CUI Ting-ting, XUE Zhi-lu   

  1. School of Mechatronic Engineering, Xi’an Vocational and Technical College, Xi’an 710000, China
  • Received:2024-11-09 Published:2025-07-25 Online:2025-08-22

摘要: 通过深度融合CSPNet与密集连接网络(DenseNet)构建CSPDenseNet骨干模块,将该模块集成到YOLOv8模型,替换主干网络末端的最后2个标准卷积模块,得到改进YOLOv8模型(Dense-YOLOv8)。结果表明,在简单背景、稀疏黄花菜(Hemerocallis citrina Baroni)花蕾场景下,Dense-YOLOv8模型成功识别出全部成熟花蕾;在简单背景、密集黄花菜花蕾场景下,Dense-YOLOv8模型在花蕾检测任务中展现出优异的识别性能,但在处理紧密相邻目标时仍存在部分漏检现象;在复杂背景、密集黄花菜花蕾场景下,Dense-YOLOv8模型成功识别出全部成熟花蕾。Dense-YOLOv8模型的mAPF1、识别速度、模型大小分别为90.75%、89%、53 f/s、217.68 MB;与YOLOv8模型、Faster R-CNN模型、YOLOv7相比,Dense-YOLOv8 模型在精简网络结构与参数的同时,显著提升了目标检测的精度与速度。

关键词: 改进YOLOv8模型, 深度学习, 黄花菜(Hemerocallis citrina Baroni), 花蕾, 识别

Abstract: A CSPDenseNet backbone module was constructed by deeply integrating CSPNet and DenseNet. This module was integrated into the YOLOv8 model, replacing the last two standard convolutional modules at the end of the backbone network, resulting in the improved YOLOv8 model (Dense-YOLOv8).The results demonstrated that the Dense-YOLOv8 model successfully identified all mature buds under scenarios with a simple background and sparse daylily (Hemerocallis citrina) Baroni buds. Under scenarios with a simple background and dense daylily buds, the Dense-YOLOv8 model exhibited excellent recognition performance in the bud detection task, although some missed detections still occurred when processing tightly adjacent targets.Under scenarios with a complex background and dense daylily buds, the Dense-YOLOv8 model successfully identified all mature buds.The mAP, F1, recognition speed, and model size of the Dense-YOLOv8 model were 90.75%, 89%, 53 f/s, and 217.68 MB, respectively. Compared with the YOLOv8 model, Faster R-CNN model and YOLOv7 model, the Dense-YOLOv8 model significantly improved both the accuracy and speed of object detection while streamlining the network structure and reducing parameters.

Key words: improved YOLOv8 model, deep learning, daylily (Hemerocallis citrina Baroni), bud, recognition

中图分类号: