湖北农业科学 ›› 2025, Vol. 64 ›› Issue (5): 160-166.doi: 10.14088/j.cnki.issn0439-8114.2025.05.025

• 信息工程 • 上一篇    下一篇

基于改进YOLOv8模型的玉米叶斑病快速识别方法

张露, 吴雪莲   

  1. 长江大学经济与管理学院,湖北 荆州 434023
  • 收稿日期:2024-10-31 出版日期:2025-05-25 发布日期:2025-06-11
  • 通讯作者: 吴雪莲(1978-),女,湖北荆州人,教授,主要从事智慧农业研究,(电话)13554481394(电子信箱)21712215@qq.com。
  • 作者简介:张 露(1996-),女,湖北恩施人,在读硕士研究生,主要从事农业可持续发展研究,(电话)18971870613(电子信箱)744459240@qq.com
  • 基金资助:
    湖北省教育厅科学研究计划项目(D20211302)

A rapid identification method for maize leaf spot disease based on the improved YOLOv8 model

ZHANG Lu, WU Xue-lian   

  1. Economics and Management School, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2024-10-31 Published:2025-05-25 Online:2025-06-11

摘要: 为了实现玉米叶斑病的快速识别,通过集成全局注意力机制(Global attention module,GAM)、Slim-Neck轻量化模块及Inner-CIoU损失函数,优化YOLOv8模型的玉米叶斑病检测性能。与YOLOv8模型相比,改进YOLOv8模型(GAM+Slim-Neck+Inner-CIoU)的PrecisionRecallmAP@0.5和mAP@[0.5∶0.95]分别增加4.15%、5.51%、3.91%和11.35%,参数量和检测时间分别减少10.39%和3.42%。改进后的YOLOv8模型在PrecisionRecallmAP@0.5和mAP@[0.5∶0.95]方面普遍优于其他模型(YOLOv3、YOLOv5、YOLOv6及Faster R-CNN),同时在参数量和检测时间上也表现出显著的优势,兼具高效性与轻量化特点。改进后的YOLOv8模型能够更高效地捕获关键信息,充分融合多维度特征,合理分配计算资源,从而提升识别准确率。

关键词: 玉米, 叶斑病, 改进, YOLOv8模型, 快速识别

Abstract: To achieve rapid identification of maize leaf spot disease, the detection performance of the improved YOLOv8 model was optimized by integrating the Global Attention Module (GAM), Slim-Neck lightweight module, and Inner-CIoU loss function. Compared with the original YOLOv8 model, the improved YOLOv8 model (GAM+Slim-Neck+Inner-CIoU) showed increases of 4.15% in Precision, 5.51% in Recall, 3.91% in mAP @0.5, and 11.35% in mAP @[0.5∶0.95], while the number of parameters and detection time decreased by 10.39% and 3.42%, respectively. The improved YOLOv8 model outperformed other models (YOLOv3, YOLOv5, YOLOv6, and Faster R-CNN) in Precision, Recall, mAP @0.5, and mAP @[0.5∶0.95], while also demonstrating significant advantages in parameter quantity and detection time, combining high efficiency with lightweight characteristics. The improved YOLOv8 model efficiently captured critical information, fully integrated multi-dimensional features, and rationally allocated computational resources, thereby enhancing recognition accuracy.

Key words: maize, leaf spot disease, improvement, YOLOv8 model, rapid identification

中图分类号: