湖北农业科学 ›› 2025, Vol. 64 ›› Issue (8): 24-30.doi: 10.14088/j.cnki.issn0439-8114.2025.08.004

• 遥感图像识别 • 上一篇    下一篇

基于无人机多光谱数据的柑橘叶面积指数反演

陈治宇1, 窦世卿2   

  1. 1.贵阳职业技术学院城乡规划建设分院,贵阳 550081;
    2.桂林理工大学测绘地理信息学院,广西 桂林 541006
  • 收稿日期:2025-05-20 出版日期:2025-08-25 发布日期:2025-09-12
  • 通讯作者: 窦世卿(1977-),女,河北定州人,教授,博士,主要从事三维GIS与遥感技术应用研究,(电话)15104536271(电子信箱)doushiqing@glut.edu.cn。
  • 作者简介:陈治宇(1994-),男,贵州贵阳人,硕士,主要从事农业遥感研究,(电话)13984326128(电子信箱)1014300283@qq.com;

UAV multispectral data-based leaf area index retrieval for citrus

CHEN Zhi-yu1, DOU Shi-qing2   

  1. 1. School of Urban-Rural Planning and Construction, Guiyang Vocational and Technical College, Guiyang 550081, China;
    2. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, Guangxi, China
  • Received:2025-05-20 Published:2025-08-25 Online:2025-09-12

摘要: 以柑橘(Citrus reticulata)为研究对象,采集无人机多光谱与柑橘叶面积指数(LAI)数据,对多光谱数据进行波段选择和组合后,采用Boruta算法、RFECV方法及未筛选3种特征处理方式,分别结合向量回归(SVR)、随机森林回归(RFR)、BP神经网络(BPNNR) 3种机器学习回归模型构建9种LAI估测组合模型。使用GridSearchCV方法优化模型参数后,对比各模型的精度和稳定性,选出最优LAI预测模型,并生成柑橘LAI空间分布影像。结果表明,Boruta算法可以有效筛选特征变量、降低模型的过拟合程度;在9种组合模型中,Boruta_BPNNR模型在柑橘LAI估测中表现最优,其数据离散度小,回归曲线与对角线的拟合度高。LAI反演结果表明,研究区LAI空间分布呈明显的南北梯度差异,北部地区的LAI普遍高于南部地区,这与实地调查中北部地区柑橘生长繁茂、南部地区长势相对稀疏的空间格局基本一致。

关键词: 柑橘(Citrus reticulata), 无人机多光谱, 叶面积指数(LAI), Boruta_BPNNR模型, 反演

Abstract: Citrus (Citrus reticulata) was selected as the research object, and UAV multispectral data and citrus leaf area index (LAI) data were collected. After band selection and combination of the multispectral data, three feature processing approaches (Boruta algorithm, RFECV method, and no feature selection) were employed, each combined with three machine learning regression models (support vector regression (SVR), random forest regression (RFR), and backpropagation neural network regression (BPNNR)) to construct nine combined models for LAI estimation. The model parameters were optimized using the GridSearchCV method, the accuracy and stability of each model were compared, the optimal LAI prediction model was selected, and a spatial distribution image of citrus LAI was generated. The results showed that the Boruta algorithm could effectively select feature variables and reduce model overfitting. Among the nine combined models, the Boruta_BPNNR model performed best in citrus LAI estimation, exhibiting low data dispersion and a high degree of fit between the regression curve and the diagonal line. The LAI retrieval results indicated that the spatial distribution of LAI in the study area showed a distinct north-south gradient difference, with LAI generally higher in the northern region than in the southern region. This was basically consistent with the spatial pattern observed in the field survey, where citrus growth was lush in the north region and relatively sparse in the south region.

Key words: citrus (Citrus reticulata), UAV multispectral, leaf area index (LAI), Boruta_BPNNR model, retrieval

中图分类号: