湖北农业科学 ›› 2026, Vol. 65 ›› Issue (1): 159-165.doi: 10.14088/j.cnki.issn0439-8114.2026.01.026

• 农业工程 • 上一篇    下一篇

基于多尺度空间注意力机制与高斯核函数软标注的华山松大小蠹受害木遥感识别方法

黄光体1, 林浩然2a, 佃袁勇2a,2b, 韩泽民2a, 彭寿连2a, 刘晓阳1, 肖箫1   

  1. 1.湖北省林业调查规划院,武汉 430079;
    2.华中农业大学,a.园艺林学学院;b.湖北林业信息工程技术研究中心,武汉 430070
  • 收稿日期:2025-12-17 出版日期:2026-01-25 发布日期:2026-02-10
  • 通讯作者: 佃袁勇(1981-),男,湖北松滋人,主要从事林业遥感与可持续森林智慧经营管理研究,(电子信箱)dianyuanyong@mail.hzau.edu.cn。
  • 作者简介:黄光体(1980-),男,贵州六盘水人,高级工程师,主要从事林草湿荒调查监测、林业信息化研究工作,(电子信箱)15630316@qq.com。
  • 基金资助:
    国家自然科学基金项目(32371873)

A remote sensing identification method for Dendroctonus armandi based on multi-scale spatial attention mechanism and Gaussian kernel soft labeling

HUANG Guang-ti1, LIN Hao-ran2a, DIAN Yuan-yong2a,2b, HAN Ze-min2a, PENG Shou-lian2a, LIU Xiao-yang1, XIAO Xiao1   

  1. 1. Forestry Investigation and Planning Institute of Hubei, Wuhan 430079, China;
    2a. College of Horticulture and Forestry Sciences; b. Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2025-12-17 Published:2026-01-25 Online:2026-02-10

摘要: 针对传统树冠边界标注耗时费力,且现有深度学习模型在复杂森林环境中易因下采样丢失空间细节而导致检测精度下降的问题,提出一种融合多尺度空间注意力机制卷积网络(MSSCN)与高斯核函数软标注的单木定位方法。以神农架林区2 000、2 200、2 400 m 3个海拔梯度的高分辨率航空遥感影像为数据源,仅标注华山松大小蠹(Dendroctonus armandi)受害木树冠中心点,并采用二维高斯核函数置信图生成标签和制作训练数据集,将区域分割任务转化为单木定位问题。通过调整多尺度特征卷积模块的位置,构建MSSCN1模型、MSSCN2模型、MSSCN3模型,并与U-Net模型、FCN模型和DeepLabV3+模型进行对比。结果表明,高斯核函数软标注方法降低了人工标注成本,同时支持受害木的精确定位。MSSCN3模型在训练100 Epoch时即达到最优性能,测试区精确率、召回率和F1得分的平均值分别为91.97%、93.68%和0.93,优于其他对比模型。MSSCN3模型在神农架林区高海拔区域整体表现出更优的检测性能,且在高暴发密度区的检测精度普遍高于低暴发密度区,然而,在海拔2 400 m的高暴发密度区,模型精度出现轻微下降,表明地形与生态因子可能对检测稳定性产生交互影响。MSSCN3模型能够准确识别神农架林区的华山松大小蠹受害木,为虫害防治提供了一种高效且鲁棒的技术路径。

关键词: 多尺度空间注意力机制, 高斯核函数软标注, 华山松大小蠹(Dendroctonus armandi), 受害木, 遥感识别

Abstract: To address the time-consuming and labor-intensive nature of traditional canopy boundary annotation, and the issue of decreased detection accuracy in existing deep learning models due to the loss of spatial details from downsampling in complex forest environments, a single-tree positioning method that integrated a multi-scale spatial attention mechanism convolutional network (MSSCN) and Gaussian kernel function soft labeling was proposed. Using high-resolution aerial remote sensing images from three altitude gradients (2 000 m, 2 200 m, and 2 400 m) in the Shennongjia Forestry District as the data source, only the canopy center points of Dendroctonus armandi were annotated. A two-dimensional Gaussian kernel function was employed to generate confidence maps for labeling and creating the training dataset, thereby transforming the regional segmentation task into a single-tree positioning problem. By adjusting the position of the multi-scale feature convolution module, MSSCN1, MSSCN2, and MSSCN3 models were constructed and compared with the U-Net, FCN, and DeepLabV3+ models. The results showed that the Gaussian kernel function soft labeling method reduced manual annotation costs while supporting the precise localization of infested trees. The MSSCN3 model achieved optimal performance after 100 training epochs, with average precision, recall, and F1-score values of 91.97%, 93.68%, and 0.93 in the test area, respectively, outperforming the other comparative models. The MSSCN3 model generally demonstrated superior detection performance in high-altitude areas of the Shennongjia Forestry District, and its detection accuracy was generally higher in high-outbreak-density areas than in low-outbreak-density areas. However, a slight decrease in model accuracy was observed in the high-outbreak-density area at 2 400 m altitude, indicating that topographic and ecological factors might have interactive effects on detection stability.The MSSCN3 model could accurately identify Pinus armandii infested trees in the Shennongjia Forestry District, providing an efficient and robust technical pathway for pest control.

Key words: multi-scale spatial attention mechanism, Gaussian kernel soft labeling, Dendroctonus armandi, infested trees, remote sensing identification

中图分类号: