[1] 陈辉,刘琳,赵平娟.秦岭华山松小蠹消化道结构与食性分化的研究[J].西北林学院学报,2004,19(2):89-92. [2] 洪承昊,柏冰洋,易家喜,等.神农架林区华山松大小蠹危害风险分析[J].中国森林病虫,2021,40(2):17-22. [3] 白雪琪,张晓丽,张凝,等.基于高光谱遥感的油松毛虫危害程度监测模型[J].北京林业大学学报,2016,38(11):16-22. [4] 吕晓君,王君,喻卫国,等.无人机监测林业有害生物初探[J].湖北林业科技,2016,45(4):30-33. [5] MEDDENS A J H, HICKE J A, VIERLING L A, et.al. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery[J]. Remote sensing of environment, 2013, 132: 49-58. [6] DENNISON P E, BRUNELLE A R, CARTER V A.Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data[J]. Remote sensing of environment, 2010, 114(11): 2431-2435. [7] WHITE J C, WULDER M A, BROOKS D, et al.Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery[J]. Remote sensing of environment, 2005, 96(3-4): 340-351. [8] THANH NOI P, KAPPAS M.Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]. Sensors, 2018, 18(1): 18. [9] PEÑA M A, CRUZ P, ROIG M. The effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification[J]. International journal of remote sensing, 2013, 34(20): 7113-7130. [10] LIU X, FREY J, DENTER M, et al.Mapping standing dead trees in temperate montane forests using a pixel and object-based image fusion method and stereo WorldView-3 imagery[J]. Ecological indicators, 2021, 133: 108438. [11] 尹宝才,王文通,王立春,等.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59. [12] HAN Z M, HU W J, PENG S L, et al.Detection of standing dead trees after pine wilt disease outbreak with airborne remote sensing imagery by multi-scale spatial attention deep learning and Gaussian kernel approach[J]. Remote sensing, 2022, 14(13): 3075. [13] 徐信罗. 基于卷积神经网络和无人机遥感的松材线虫病受害木监测研究[D].南昌:南昌大学,2021. [14] FASSNACHT F E, LATIFI H, GHOSH A, et al.Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality[J]. Remote sensing of environment, 2014, 140: 533-548. [15] HALL R J, CASTILLA G, WHITE J C, et al.Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective[J]. The Canadian entomologist,2016,148(S1):296-356. [16] LIN H R, LIU X Y, HAN Z M, et al.Identification of tree species in forest communities at different altitudes based on multi-source aerial remote sensing data[J]. Applied sciences, 2023, 13(8): 4911. [17] 文仕知,宋良友,喻勋林.神农架华山松群落特征研究[J].中南林业科技大学学报,2010,30(4):91-96. [18] 陈辉. 小蠹类森林害虫可持续控制的策略和方法[J].西北林学院学报,2002,17(4):62-65. [19] WAN Q, HUANG Z L, LU J C, et al. SeaFormer++: Squeeze-enhanced axial transformer for mobile visual recognition[EB/OL]. (2023-01-30). https://arxiv.org/abs/2301.13156. [20] HARALICK R M, SHANMUGAM K, DINSTEIN I.Textural features for image classification[J]. IEEE transactions on systems, man, and cybernetics, 1973, S3(6): 610-621. [21] 张亚昊,佃袁勇,黄光体,等.不同演替阶段马尾松林林分空间结构对物种多样性的影响[J].生态学杂志,2021,40(8):2357-2365. [22] HAN Z M, DIAN Y Y, XIA H, et al.Comparing fully deep convolutional neural networks for land cover classification with high-spatial-resolution Gaofen-2 images[J]. ISPRS international journal of geo-information, 2020, 9(8): 478. [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04). https://arxiv.org/abs/1409.1556. [24] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587. |