湖北农业科学 ›› 2025, Vol. 64 ›› Issue (6): 190-196.doi: 10.14088/j.cnki.issn0439-8114.2025.06.032

• 信息工程 • 上一篇    下一篇

Sentinel-2遥感影像在天山北坡乔木林地上碳储量估算中的应用

赵兵杰, 高鹏远, 王春博, 赵卫常, 左伟昆, 梁岱松, 司雷   

  1. 河北省煤田地质局物测地质队(河北省煤炭地下气化研究中心),河北 邢台 054000
  • 收稿日期:2024-12-23 出版日期:2025-06-25 发布日期:2025-07-18
  • 作者简介:赵兵杰(1993-),女,河北邢台人,工程师,硕士,主要从事地理信息与遥感应用工作,(电子信箱)bingjie_zhao@163.com。
  • 基金资助:
    河北省一般公共预算财政资金项目(13000023P00B044100399)

Application of Sentinel-2 remote sensing imagery in aboveground carbon storage estimation of arboreal forests in the North Slope of Tianshan Mountains

ZHAO Bing-jie, GAO Peng-yuan, WANG Chun-bo, ZHAO Wei-chang, ZUO Wei-kun, LIANG Dai-song, SI Lei   

  1. Geophysical Survey Team of Hebei Province Coalfield Geology Bureau(Hebei Coal Underground Gasification Research Center), Xingtai 054000,Hebei, China
  • Received:2024-12-23 Published:2025-06-25 Online:2025-07-18

摘要: 为探究Sentinel-2对天山北坡乔木林地上碳储量的估测潜力,利用2021年Sentinel-2遥感影像和样方调查数据开展试点研究。综合考虑光谱信息、植被指数、纹理特征、地形因子,采用平均残差平方和(RMS)、赤池信息准则(AIC)、校正决定系数(R2_adjust)筛选最优变量,应用偏最小二乘回归法和稳健估计法分别建模,并以决定系数(R2)、均方根误差(ERMS)、相对均方根误差(ERRMS)、偏差(bbias)评价模型精度。结果表明,基于Sentinel-2遥感影像数据共提取出22个极显著遥感因子(P<0.01),通过变量优选确定7个建模因子,涵盖光谱信息(band11、band12、band4、band5)、植被指数(NDVI、RVI)和纹理特征(b11-Mean)3类特征。偏最小二乘回归模型和稳健估计模型的预测精度和可靠性均较高,且偏最小二乘回归模型更优,表明Sentinel-2在天山北坡乔木林碳储量估测中具有较好的适用性。

关键词: Sentinel-2, 遥感影像, 乔木林, 地上碳储量, 偏最小二乘回归法, 稳健估计法, 天山北坡

Abstract: To explore the potential of Sentinel-2 for estimating aboveground carbon storage in arboreal forests on the North Slope of Tianshan Mountains, a pilot study was conducted using Sentinel-2 remote sensing imagery from 2021 and quadrat survey data. By integrating spectral information, vegetation indices, textural features, and topographic factors, optimal variables were screened using mean residual sum of squares (RMS), akaike information criterion (AIC), and adjusted coefficient of determination (R2_adjust). Both the partial least squares regression model and the robust estimation model were developed, with their accuracy evaluated through the coefficient of determination (R2), root mean square error (ERMS), relative root mean square error (ERRMS), and bias (bbias). The results showed that 22 highly significant remote sensing factors (P<0.01) were extracted from Sentinel-2 remote sensing imagery data, with 7 modeling factors ultimately selected through variable optimization. These factors covered three categories: Spectral information (band11, band12, band4, band5), vegetation indices (NDVI, RVI), and textural features (b11-Mean). Both the partial least squares regression model and robust estimation model demonstrated high predictive accuracy and reliability, with the former outperforming the latter. The results indicated the strong applicability of Sentinel-2 for aboveground carbon storage estimation in arboreal forests on the North Slope of Tianshan Mountains.

Key words: Sentinel-2, remote sensing imagery, arboreal forests, aboveground carbon storage, partial least squares regression, robust estimation, the North Slope of Tianshan Mountains

中图分类号: