[1] SUN W, YU H, SHEN Y, et al.Phylogeny and evolutionary history of the silkworm[J]. Science China life sciences, 2012, 55(6): 483-496. [2] 刘彦群, 鲁成.家蚕的起源与进化研究进展[J]. 蚕业科学, 2018, 44(3): 353-358. [3] GOLDSMITH M R, SHIMADA T, ABE H.The genetics and genomics of the silkworm, Bombyx mori[J]. Annual review of entomology, 2005, 50: 71-100. [4] KOMOTO N.Behavior of the larvae of wild mulberry silkworm Bombyx mandarina, domesticated silkworm Bombyx mori and their hybrid[J]. Journal of insect biotechnology and sericology, 2017, 86(1):17-20. [5] TONG X L, HAN M J, LU K, et al.High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation[J]. Nature communication, 2022, 13(1): 5619. [6] XIANG H, LIU X, LI M, et al.The evolutionary road from wild moth to domestic silkworm[J]. Nature ecology and evolution, 2018, 2(8): 1268-1279. [7] XIA Q Y, GUO Y R, ZHANG Z, et al.Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx)[J]. Science, 2009, 326: 433. [8] XIA Q Y, ZHOU Z Y, LU C, et al.A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science, 2004, 306: 1937-1940. [9] FANG S M, ZHOU Q Z, YU Q Y, et al.Genetic and genomic analysis for cocoon yield traits in silkworm[J]. Scientific reports, 2020, 10(1): 5682-5693. [10] XIANG H, LI X, DAI F Y, et al.Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication[J]. BMC genomics, 2013, 14: 646-656. [11] LU Y R, LUO J W, AN E X, et al.Deciphering the genetic basis of silkworm cocoon colors provides new insights into biological coloration and phenotypic diversification[J]. Molecular biology and evolution, 2023, 40(2): 17. [12] LI C L, TONG X L, ZUO W D, et al.The beta-1, 4-N-acetylglucosaminidase 1 gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori[J]. PloS genetics, 2020, 16(7): 1008907. [13] GAI T T, TONG X L, HAN M J, et al.Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon[J]. PloS genetics, 2020, 16(9): e1009004. [14] WANG M, LIN Y J, ZHOU S Y, et al.Genetic mapping of climbing and mimicry: Two behavioral traits degraded during silkworm domestication[J]. Frontiers in genetics, 2020, 11: 566961. [15] LU K P, LIANG S B, HAN M J, et al.Flight muscle and wing mechanical properties are involved in flightlessness of the domestic silkmoth, Bombyx mori[J]. Insects, 2020,11(4):220. [16] RIESGO A, ANDRADE S C, SHARMA P P, et al.Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa[J]. Frontiers in zoology, 2012, 9(1): 33. [17] ZHANG H Z, LI Y Y, AN T, et al.Comparative transcriptome and iTRAQ proteome analyses reveal the mechanisms of diapause in Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae)[J]. Frontiers in physiology, 2018, 9: 1697. [18] REN S, HAO Y J, CHEN B, et al.Global transcriptome sequencing reveals molecular profiles of summer diapause induction stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)[J]. G3: genes genomes genetics, 2018, 8(1): 207-217. [19] YIN Z J, DONG X L, KANG K, et al.FoxO transcription factor regulate hormone mediated signaling on Nymphal Diapause[J]. Frontiers in physiology, 2018, 9: 1654. [20] SUN L, ZHANG Y N, QIAN J L, et al.Identification and expression patterns of Anoplophora chinensis (Forster) chemosensory receptor genes from the antennal transcriptome[J]. Frontiers in physiology, 2018, 9: 90. [21] ZHOU Q Z, FU P, LI S S, et al.A comparison of co-expression networks in silk gland reveals the causes of silk yield increase during silkworm domestication[J]. Frontiers in genetics,2020,11:225. [22] FANG S M, HU B L, ZHOU Q Z, et al.Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms[J]. BMC genomics, 2015, 16(1): 60. [23] ZHOU Q Z, FANG S M, ZHANG Q, et al.Identification and comparison of long non-coding RNAs in the silk gland between domestic and wild silkworms[J]. Insect science,2017,25(4): 604-616. [24] CHENG T C, FU B H, WU Y Q, et al.Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina[J]. PloS one, 2015, 10(3): e0122837. [25] SHEN W D, KUNIKATSU H, HAJIME F.Relationships between an application of KK-42 and pupal development in the silkworm, Bombyx mandarina[J]. Proceedings of the Japan academy, series B physical and biological sciences, 1993, 69(6): 144-148. [26] SHEN W D, KUNIKATSU H.Role of the brain on the resumption of development in summer diapausing pupae of Bombyx mandarina[J]. Proceedings of the Japan academy, series B physical and biological sciences, 1993, 69(6): 149-153. [27] SHEN W D, KUNIKATSU H, HAJIME F.The relationships between pupal development and ecdysteroid levels in summer diapausing silkworm, Bombyx mandarina[J]. Proceedings of the Japan academy, series B physical and biological sciences, 1993, 69(6): 139-143. [28] TRAPNELL C, WILLIAMS B A, PERTEA G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature biotechnology, 2010, 28(5): 511-515. [29] ANDERS S, HUBER W.Differential expression analysis for sequence count data[J]. Genome biology, 2010, 11(10): R106. [30] WU Y Q, CHENG T C, LIU C, et al.Systematic identification and characterization of Long Non-Coding RNAs in the silkworm, Bombyx mori[J]. PloS one, 2016, 11(1): e0147147. [31] DENLINGER D L.Why study diapause?[J]. Entomological research, 2008,38: 1-9. [32] RAGLAND G J, ARMBRUSTER P A, MEUTI M E.Evolutionary and functional genetics of insect diapause: A call for greater integration[J]. Current opinion in insect science, 2019, 36: 74-81. [33] GUO S Y, WANG X H, KANG L H.Special significance of Non-Drosophila insects in aging[J]. Frontiers in cell and developmental biology, 2020, 8: 576571. [34] LI Y N, LIU Y B, XIE X Q, et al.The modulation of trehalose metabolism by 20-Hydroxyecdysone in Antheraea pernyi (Lepidoptera: Saturniidae) during its diapause termination and post-termination period[J]. Journal of insect science, 2020, 20(5): 18. [35] ZHAO L Q, WANG X M, LIU Z, et al.Energy consumption and cold hardiness of diapausing fall webworm pupae[J]. Insects, 2022, 13(9): 853. [36] ZHANG J, MIANO F N, JIANG T, et al.Characterization of three heat shock protein genes in Pieris melete and their expression patterns in response to temperature stress and pupal diapause[J]. Insects, 2022, 13(5): 430. [37] ZHAO J J, HUANG Q T, ZHANG G J, et al.Characterization of two small heat shock protein genes (hsp17.4 and hs20.3) from sitodiplosis mosellana, and their expression regulation during diapause[J]. Insects, 2021, 12(2): 119. [38] XIAO S,WANG B B,LI K,et al.Identification and characterization of miRNAs in an endoparasitoid wasp, Pteromalus puparum[J]. Archives of insect biochemistry and physiology,2020,103(2): e21633. [39] MIKI T, SHINOHARA T, CHAFINO S, et al.Photoperiod and temperature separately regulate nymphal development through JH and insulin/TOR signaling pathways in an insect[J]. Proceedings of the national academy of sciences of the United States of America, 2020, 117(10): 5525-5531. [40] LIN X Y, SCHUTTER D K, CHAFINO S, et al.Target of rapamycin (TOR) determines appendage size during pupa formation of the red flour beetle Tribolium castaneum[J]. Journal of insect physiology, 2019, 117: 103902. [41] KOSTAL V, STETINA T, POUPARDIN R, et al.Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(32): 8532-8537. [42] POST S, LIAO S F, YAMAMOTO R, et al.Drosophila insulin-like peptide dilp1 increases lifespan and glucagon-like Akh expression epistatic to dilp2[J]. Aging cell, 2019, 18(1): e12863. [43] GENG S L, ZHANG X S, XU W H, et al.COXIV and SIRT2-mediated G6PD deacetylation modulate ROS homeostasis to extend pupal lifespan[J]. The FEBS journal, 2021, 288(7): 2437-2453. [44] ZHANG X S, WANG Z H, LI W S, et al.FoxO induces pupal diapause by decreasing TGFβ signaling[J]. Proceedings of the national academy of sciences of the United States of America, 2022, 119(49): e2210404119. [45] CHEN W, XU W H.Wnt/beta-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4[J]. Insect biochemistry and molecular biology, 2014, 53: 44-53. [46] SAUNDERS D S.Dormancy, diapause, and the role of the circadian system in insect photoperiodism[J]. Annual review of entomology, 2020, 65: 373-389. [47] TAKEDA M, SUZUKI T.Circadian and neuroendocrine basis of photoperiodism controlling diapause in insects and mites: A review[J]. Frontiers in physiology, 2022, 13: 867621. |