湖北农业科学 ›› 2025, Vol. 64 ›› Issue (12): 218-227.doi: 10.14088/j.cnki.issn0439-8114.2025.12.037

• 信息工程 • 上一篇    下一篇

YOLO系列模型在麦穗检测中的演进规律、应用效能与未来展望

王青1, 王智强2, 刘鸿3, 梁敏3, 张雨晨3, 林宇3   

  1. 1.四川水利职业技术学院,成都 611231;
    2.成都农业科技职业学院,成都 611130;
    3.四川农业大学小麦研究所,成都 611130
  • 收稿日期:2025-07-31 发布日期:2025-12-30
  • 通讯作者: 林 宇(1991-),男,四川成都人,讲师,博士,主要从事麦类作物种质资源创新与利用研究,(电话)13982289838(电子信箱)linuuu@outlook.com。
  • 作者简介:王 青(1993-),女(羌族),四川绵阳人,助理研究员,硕士,主要从事小麦作物种质资源创新与利用、智慧农业研究,(电话)17844612995(电子信箱)1396538444@qq.com;共同第一作者,王智强(1991-),男,四川内江人,讲师,博士,主要从事大麦、小麦遗传育种及优异基因挖掘研究,(电话)18780183637(电子信箱)344329847@qq.com。
  • 基金资助:
    四川省四川水利职业技术学院科研基金资助项目(KY2023-15)

Evolution, application efficiency, and future prospects of YOLO series models in wheat ear detection

WANG Qing1, WANG Zhi-qiang2, LIU Hong3, LIANG Min3, ZHANG Yu-chen3, LIN Yu3   

  1. 1. Sichuan Water Conservancy Vocational College, Chengdu 611231, China;
    2. Chengdu Agricultural College, Chengdu 611130, China;
    3. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2025-07-31 Online:2025-12-30

摘要: 通过梳理国内外YOLO系列模型及其在麦穗监测中的应用研究,发现该类模型凭借出色的实时性与高精度优势,已成为农业智能感知领域的研究热点。通过持续的模型优化与改进,麦穗检测的精度与效率不断提升,为小麦产量的智能化预测和农业现代化发展提供了有力支撑。尽管YOLO系列模型在麦穗监测中已取得显著进展,但在轻量化部署、多模态数据融合及跨场景泛化能力等方面仍存在提升空间。未来研究应聚焦上述方向,进一步增强模型的实用性与鲁棒性,为智慧农业提供更高效、可靠的技术支持。

关键词: YOLO系列模型, 麦穗, 目标检测, 特征提取, 检测精度, 演进规律, 应用效能, 未来展望

Abstract: By reviewing YOLO series models and their application research in wheat ear monitoring at home and abroad, it was found that these models, with their excellent real-time performance and high precision advantages, had become a research hotspot in the field of agricultural intelligent perception.Through continuous model optimization and improvement, the accuracy and efficiency of wheat ear detection were continuously improved, providing strong support for the intelligent prediction of wheat yield and the development of agricultural modernization. Although YOLO series models had made significant progress in wheat ear monitoring, there was still room for improvement in lightweight deployment, multi-modal data fusion, and cross-scene generalization ability. Future research should focus on the above directions to further enhance the practicality and robustness of the models, providing more efficient and reliable technical support for smart agriculture.

Key words: YOLO series models, wheat ear, object detection, feature extraction, detection accuracy, evolution rules, application efficiency, future prospects

中图分类号: