[1] 凌启鸿, 洪程, 艳锋, 等. 技术的新发展——精确定量栽培[J].中国稻米,2005(1):3-7. [2] CHEN M S, PRESTING G, BARBAZUK W B, et al.An integrated physical and genetic map of the rice genome[J]. The plant cell, 2002, 14(3):537-545. [3] 叶俊, 吴建国, 杜婧, 等. 水稻“9311”突变体筛选和突变体库构建[J]. 作物学报, 2006, 32(10):1525-1529, 1599-1600. [4] 彭波, 徐庆国, 李海林, 等. 农作物化学诱变育种研究进展[J].作物研究,2007(S1):517-519, 524. [5] JACKSON D A, SYMONS R H, BERG P.Biochemical method for inserting new genetic information into DNA of Simian Virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli[J]. Proceedings of the national academy of sciences, 1972, 69(10):2904-2909. [6] ZAMBRYSKI P, JOOS H, GENETELLO C, et al.Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity[J]. EMBO J,1983,2(12):2143-2150. [7] SASAKI A,ASHIKARI M,UEGUCHI-TANAKA M,et al.A mutant gibberellin-synthesis gene in rice[J]. Nature,2002,416(6882):701-702. [8] LI X, QIAN Q, FU Z, et al.Control of tillering in rice[J]. Nature, 2003, 422(6932):618-621. [9] RONALD P C, ALBANO B, TABIEN R, et al.Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21[J]. Molecular general genetics, 1992, 236(1):113-120. [10] 宁敏, 刘俊雄, 暴亚冲, 等. 水稻种质资源香味基因Badh2的分子鉴定及香稻筛选[J]. 分子植物育种, 2021, 19(15):5017-5029. [11] 柳梦林, 张萍, 叶胜海, 等. 辐射诱变创制水稻新种质研究进展及浙粳99突变体库的建立[J]. 植物遗传资源学报, 2021, 22(1):16-27. [12] HASE Y, YOSHIHARA R, NOZAWA S, et al.Mutagenic effects of carbon ions near the range end in plants[J]. Mutation research, 2012, 731(1-2):41-47. [13] 张莉, 张勇, 张渊海, 等.γ射线辐射诱导水稻突变体的基因组变异分析[J]. 激光生物学报, 2021, 30(1):59-66. [14] ANDRÉS F, GALBRAITH D W, TALÓN M, et al. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice[J]. Plant physiology, 2009, 151(2):681-690. [15] 胡彬华, 王平, 杜安平, 等. 水稻淡黄叶突变体pyl3的鉴定和基因定位[J]. 核农学报, 2021, 35(12):2696-2703. [16] 鄢小青, 陈能刚, 李欢, 等. 水稻白条纹转绿突变体wsl887的鉴定和基因定位[J]. 核农学报, 2021, 35(11):2451-2462. [17] 李金国, 李源祥, 华育坚, 等. 利用搭载卫星水稻干种子选育出“赣早籼47号”的研究[J]. 航天医学与医学工程,2001(4):286-290. [18] 王慧,张建国,陈志强. 航天育种优良水稻品种华航一号[J]. 中国稻米, 2003(6):18. [19] 陈淳,严贤诚,罗文龙,等. 水稻空间诱变与重离子诱变生物学效应及突变体定向筛选[J]. 华南农业大学学报,2021,42(1):49-60. [20] TILL B J, REYNOLDS S H, GREENE E A, et al.Large-scale discovery of induced point mutations with high-throughput TILLING[J]. Genome research, 2003, 13(3):524-530. [21] BURNS P A, ALLEN F L, GLICKMAN B W.DNA sequence analysis of mutagenicity and site specificity of ethyl methanesulfonate in Uvr+ and UvrB- strains of Escherichia coli[J]. Genetics, 1986, 113(4):811-819. [22] AKIRA A, SHUNICHI K, KENTARO Y, et al.Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nature biotechnology, 2012, 30(2):174-178. [23] 陈天子, 余月, 凌溪铁, 等. EMS诱变水稻创制抗咪唑啉酮除草剂种质[J]. 核农学报, 2021, 35(2):253-261. [24] 倪浩凌, 吴文诗, 颜艳敏, 等. 水稻穗发芽突变体的筛选及候选基因鉴定[J]. 植物遗传资源学报, 2020, 21(5):1214-1220. [25] 吕军, 刘军, 姜秀英, 等. EMS诱导水稻辽星1号突变体的筛选与鉴定[J]. 分子植物育种, 2022,20(12):4038-4043. [26] 褚晓洁, 芦涛, 叶涵斐, 等. 水稻叶片衰老基因LPS1的克隆与功能研究[J]. 中国水稻科学, 2021, 35(5):427-438. [27] 吴先美, 李三峰, 胡萍, 等. 水稻分蘖调控基因HTD3的克隆与功能研究[J]. 中国水稻科学, 2021, 35(6):535-542. [28] HE P L, WANG X W, ZHANG X B, et al.Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa)[J]. BMC plant biology, 2018, 18(1):273. [29] 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5):520-532. [30] 李志新, 邢永忠, 周想春, 等. LR2基因调控水稻茎厚、抗折力及其在抗倒伏中的应用[P].中国专利:CN201910200830.1,2019-07-30. [31] LARKIN P J, SCOWCROFT W R.Somaclonal variation—A novel source of variability from cell cultures for plant improvement[J]. Theoretical and applied genetics, 1981, 60(4):197-214. [32] 郑文静, 张燕之, 王昌华, 等. 水稻不同外植体组织培养的差异性及其后代变异的研究[J]. 安徽农业科学, 2008, 36(4):1368-1370. [33] LEE K,JEON H,KIM M.Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars[J]. Plant cell, tissue and organ culture, 2002, 71(3):237-244. [34] 刘元风, 刘彦卓, 贺红, 等. 几种影响籼稻成熟胚愈伤组织诱导及再生的因素[J]. 植物生理学通讯, 2004, 40(3):319-322. [35] HENKE R R,MANSUR M A,CONSTANTIN M J.Organogenesis and plantlet formation from organ-and seedling-derived calli of rice(Oryza sativa)[J]. Physiologia plantarum,1978,44(1):11-14. [36] 龚志云, 于恒秀, 裔传灯. 植物体细胞无性系变异的研究进展[J]. 中国农学通报, 2008, 24(7):65-68. [37] 赵成章, 孙宗修, 郑康乐, 等. 水稻体细胞组织培养在品种改良上的应用[J]. 中国农业科学, 1984, 17(5):35-40. [38] 孙立华, 佘建明, 吕学锋. 用组织培养法筛选水稻抗白叶枯病突变体——Ⅰ. 水稻愈伤组织抗白叶枯病病原菌的选择及其再生植株的抗病性鉴定[J]. 遗传学报, 1986, 13(3):188-193. [39] 凌定厚, VIDHYASEHARAN P, BORROMEO E S, 等. 运用植物毒素离体筛选水稻抗胡麻叶斑病种质的研究[J]. 遗传学报, 1986, 13(3):194-200. [40] AKIO M,KATSUYUKI T,KAZUMASA M, et al.Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. The plant cell, 2003,15(8):1771-1780. [41] JEON J S, LEE S, JUNG K H, et al.T‐DNA insertional mutagenesis for functional genomics in rice[J]. The plant journal, 2000, 22(6):561-570. [42] KRYSAN P J, YOUNG J C, SUSSMAN M R.T-DNA as an insertional mutagen in Arabidopsis[J]. The plant cell, 1999, 11(12):2283-2290. [43] GRECO R, OUWERKERK P B F, KAM R J, et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Molecular genetics and genomics, 2003, 108(1):10-24. [44] GRECO R, OUWERKERK P B F, TAAL A J C, et al. Transcription and somatic transposition of the maize En/Spm transposon system in rice[J]. Molecular genetics and genomics, 2004, 270(6):514-523. [45] 崔永祯, 赵红, 黄格, 等. 农杆菌介导的冷诱导基因水稻遗传转化体系的建立[J]. 江西农业学报, 2020, 32(7):6-11. [46] 刘华,梁发茂,张德建,等.箭竹DNA导入水稻后其遗传背景、农艺性状及产量分析[J].南方农业学报,2018,49(4):619-62. [47] 李广信, 王广元, 于晓慧, 等. 高粱DNA导入水稻后代主要性状分析[J]. 分子植物育种, 2021, 19(9):3046-3052. [48] 吴娴, 李佳丽, 曾庆鸿, 等. 利用CRISPR/Cas9基因编辑技术改良大粒香稻瘟病抗性[J]. 种子, 2021, 40(7):50-55. [49] 莫天宇, 徐善斌, 邹德堂, 等. 利用CRISPR/Cas9技术敲除OsEIL1和OsEIL2基因改良水稻耐盐性[J]. 华北农学报, 2021, 36(1):71-80. [50] HUI S, LI H, MAWIA A M, et al.Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant biotechnology journal, 2022, 20(1):59-74. [51] WANG C, LIU Q, YI S, et al.Clonal seeds in hybrid rice using CRISPR/Cas9[J]. BioRxiv, 2018:496042. [52] 任伊佳, 朱柏光, 陶均, 等. 水稻类病斑突变体spl41的表型鉴定及生理分析[J]. 分子植物育种, 2020, 18(6):1967-1973. [53] 葛倩雯, 金宝花, 傅小进, 等. 水稻卷叶矮化突变体rld的表型鉴定及基因精细定位[J]. 浙江师范大学学报(自然科学版), 2019, 42(4):434-440. [54] 林静霞, 朱俊兆, 虞洁, 等. 水稻短根突变体ksr8的表型分析和基因克隆[J]. 核农学报, 2020, 34(7):1378-1386. [55] 刘林, 朱泽, 王致远, 等. 水稻白穗突变体wp8的表型鉴定及候选基因定位和功能分析[J]. 南京农业大学学报, 2021, 44(6):1035-1045. [56] 吕军, 姜秀英, 刘军, 等. 水稻心白突变体xb1的淀粉理化特性分析[J]. 核农学报, 2021, 35(10):2214-2222. [57] 尚丽娜, 陈新龙, 米胜南, 等. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5):662-675. [58] 张涛荟, 王海宇, 万华, 等. 水稻雌雄不育突变体Osfma2的细胞学观察及基因图位克隆[J]. 中国水稻科学, 2022, 36(1):13-26. [59] 李广信, 王广元, 于晓慧, 等. 高粱DNA导入水稻稳定材料的特性及同工酶分析[J]. 山西农业科学, 2008, 36(1):28-29. [60] 姜军剑, 金应浩, 柏鹤, 等. 水稻光温敏核不育系与常规品种的酯酶同工酶比较研究[J]. 延边大学农学学报, 2014, 36(4):342-347. [61] 陈受宜, 朱立煌, 洪建, 等. 水稻抗盐突变体的分子生物学鉴定[J]. 植物学报, 1991, 33(8):569-573. [62] 朴日花, 金永梅, 金京花, 等. 水稻穂顶部颖花退化T-DNA插入突变体的分子鉴定及表型特征分析[J]. 东北农业科学, 2019, 44(6):27-32. [63] 郝宏姣, 王鑫, 田瑶, 等. 水稻早抽穗突变体zc1的表型分析及候选基因鉴定[J]. 天津师范大学学报(自然科学版), 2021, 41(3):47-52. [64] 陶英瑜, 常溪芮, 徐亚杰, 等. 利用基因编辑技术构建水稻OsABI5突变体[J/OL]. 分子植物育种:1-7[2022-10-31].http://kns.cnki.net/kcms/detail/46.1068.S.20210531.1004.004.html. [65] KIM H J, YOON M-R, CHUN A, et al.Identification of novel mutations in the rice starch branching enzyme I gene via TILLING by sequencing[J]. Euphytica, 2018, 214(6):94. [66] CAO Z Z,LIN X Y,YANG Y J,et al.Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC plant biology, 2019, 19(1):250. [67] WANG H,ZHANG Y,SUN L,et al.WB1, a regulator of endosperm development in rice, is identified by a modified MutMap method[J]. International journal of molecular sciences,2018, 19(8):2159. |