湖北农业科学 ›› 2025, Vol. 64 ›› Issue (4): 1-6.doi: 10.14088/j.cnki.issn0439-8114.2025.04.001

• 专题:智慧农业 •    下一篇

基于无人机高光谱和激光雷达数据的单木树种分类

章萌, 王红, 刘思思, 杨文财   

  1. 河海大学地理与遥感学院,南京 210098
  • 收稿日期:2024-11-30 出版日期:2025-04-25 发布日期:2025-05-12
  • 作者简介:章萌(1998-),女,四川成都人,在读硕士研究生,研究方向为林业遥感,(电话)17360076850(电子信箱)zm1136631851@163.com。
  • 基金资助:
    国家自然科学基金项目(31971579)

Individual tree species classification based on UAV hyperspectral and LiDAR data

ZHANG Meng, WANG Hong, LIU Si-si, YANG Wen-cai   

  1. College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China
  • Received:2024-11-30 Published:2025-04-25 Online:2025-05-12

摘要: 利用无人机激光雷达(LiDAR)数据进行单木分割并获取单木树冠范围,提取树冠范围内的无人机高光谱数据。基于波段反射率、植被指数和纹理指数构建特征融合方案,分别为方案1(波段反射率)、方案2(植被指数)、方案3(纹理指数)、方案4(波段反射率+植被指数)、方案5(波段反射率+纹理指数)、方案6(植被指数+纹理指数)、方案7(波段反射率+植被指数+纹理指数)。采用随机森林算法对黄河三角洲孤岛防护林开展单木尺度树种分类研究,实现对刺槐(Robinia pseudoacacia)、国槐(Sophora japonica)、榆树(Ulmus pumila)和白蜡(Fraxinus chinensis)4个树种的单木分类。结果表明,仅使用纹理指数进行树种分类的结果最差,精度为0.333,Kappa系数为0.056;方案7的分类结果最好,精度为0.917,Kappa系数为0.887。方案5的分类精度为0.916,Kappa系数为0.886,方案5在保证分类精度的同时,明显降低了特征维度,因此推荐将光谱反射特征与空间纹理特征相结合的特征组合方案作为最优方案。

关键词: 无人机, 高光谱, 激光雷达, 单木尺度, 树种分类

Abstract: UAV LiDAR data were used for individual tree segmentation to obtain tree crown boundaries, and UAV hyperspectral data within the crown boundaries were extracted. Feature fusion schemes were constructed based on band reflectance, vegetation indices, and texture indices, including scheme 1 (band reflectance), scheme 2 (vegetation indices), scheme 3 (texture indices), scheme 4 (band reflectance + vegetation indices), scheme 5 (band reflectance + texture indices), scheme 6 (vegetation indices + texture indices), and scheme 7 (band reflectance + vegetation indices + texture indices). The random forest algorithm was applied to classify individual tree species in the Gudao shelterbelt of the Yellow River Delta, achieving classification of four species: Robinia pseudoacacia, Sophora japonica, Ulmus pumila, and Fraxinus chinensis. The results showed that using only texture indices yielded the worst classification accuracy (0.333) and Kappa coefficient (0.056). Scheme 7 achieved the best classification results, with an accuracy of 0.917 and a Kappa coefficient of 0.887. Scheme 5 achieved a classification accuracy of 0.916 and a Kappa coefficient of 0.886. While maintaining classification accuracy, scheme 5 significantly reduced feature dimensionality. Therefore, the combination of spectral reflectance and spatial texture features was recommended as the optimal scheme.

Key words: UAV, hyperspectral, LiDAR, individual tree level, tree species classification

中图分类号: