湖北农业科学 ›› 2025, Vol. 64 ›› Issue (5): 134-140.doi: 10.14088/j.cnki.issn0439-8114.2025.05.021

• 信息工程 • 上一篇    下一篇

基于iTransformer与LSTM模型融合的农场气温多步预测

谢琪, 张太红, 刘海朋   

  1. 新疆农业大学计算机与信息工程学院/新疆农业信息化工程技术研究中心/智能农业教育部工程研究中心,乌鲁木齐 830052
  • 收稿日期:2024-10-16 出版日期:2025-05-25 发布日期:2025-06-11
  • 通讯作者: 张太红(1965-),男,陕西西安人,教授,主要从事人工智能、农业信息化研究,(电话)13325538255(电子信箱)zth@xjau.edu.cn。
  • 作者简介:谢 琪(2000-),女,广东广州人,在读硕士研究生,研究方向为智慧农业,(电话)13427621583(电子信箱)xie-7@qq.com
  • 基金资助:
    科技部科技创新2030重大项目(2022ZD0115800); 新疆维吾尔自治区重大科技专项(2022A02011-4)

Multi-step temperature prediction for farms based on iTransformer and LSTM model fusion

XIE Qi, ZHANG Tai-hong, LIU Hai-peng   

  1. College of Computer and Information Engineering/Xinjiang Engineering Research Center for Agricultural Informatization/Engineering Research Center of Intelligent Agriculture, Ministry of Education, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2024-10-16 Published:2025-05-25 Online:2025-06-11

摘要: 针对农场气温数据的非线性和复杂性特征,以新疆维吾尔自治区昌吉市华兴农场气象站数据为基础,通过斯皮尔曼相关性分析筛选出气温、地面红外温度、露点温度、相对湿度、水汽压、本站气压、海平面气压 7个特征作为模型输入特征,并对iTransformer-LSTM模型、Transformer模型、LSTM模型、iTransformer模型、Transformer-LSTM模型进行对比分析。结果表明,iTransformer-LSTM模型的表现最好,相较于最优的基准模型iTransformer,该模型的均方根误差(RMSE)下降了13.72%,平均绝对误差(MAE)下降了14.12%,平均绝对百分比误差(MAPE)下降了13.61%。iTransformer-LSTM模型能够有效提取时间序列特征表达、捕捉长期依赖关系、表征全局特征及上下文信息,适用于多特征多步时间序列气温预测任务。

关键词: iTransformer, LSTM, 模型融合, 多特征, 农场气温, 多步预测

Abstract: To address the nonlinear and complex characteristics of farm temperature data, based on meteorological station data from Huaxing Farm in Changji City, Xinjiang Uygur Autonomous Region,seven features including temperature, ground infrared temperature, dew point temperature, relative humidity, vapor pressure, station pressure, and sea-level pressure were selected as model input features through Spearman correlation analysis,and comparative analysis was conducted among the iTransformer-LSTM model, Transformer model, LSTM model, iTransformer model, and Transformer-LSTM model. The results showed that the iTransformer-LSTM model achieved the best performance. Compared with the optimal baseline model iTransformer, this model reduced the root mean square error (RMSE) by 13.72%, mean absolute error (MAE) by 14.12%, and mean absolute percentage error (MAPE) by 13.61%.The iTransformer-LSTM model could effectively extract time-series feature representations, capture long-term dependencies, and characterize global features and contextual information, making it suitable for multi-feature multi-step time-series temperature prediction tasks.

Key words: iTransformer, LSTM, model fusion, multi-feature, farm temperature, multi-step prediction

中图分类号: