湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 126-131.doi: 10.14088/j.cnki.issn0439-8114.2024.08.022

• 生产生长模型 • 上一篇    下一篇

基于智能算法的云南甘蔗产量预测

王泳智a, 田鹏a, 李富生b, 孙吉红b,c, 孙陈a, 刘振洋a, 刘念d, 钱晔a,c,e   

  1. 云南农业大学,a.大数据学院(信息工程学院); b.农学与生物技术学院; c.云南省作物生产与智慧农业重点实验室; d.园林园艺学院; e.云南省农业大数据工程技术研究中心,昆明 650201
  • 收稿日期:2023-09-15 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 钱 晔,副教授,主要从事人工智能算法研究,(电子信箱)qy198403@163.com。
  • 作者简介:王泳智(1997-),男,云南昆明人,在读硕士研究生,研究方向为农业信息化,(电子信箱)wyz_ynau@163.com。
  • 基金资助:
    云南省作物生产与智慧农业重点实验室开放基金项目(2021ZHNY02); 云南主要粮经作物全智慧产业链关键技术研究与示范项目(202202AE090021)

Yunnan sugarcane yield prediction based on intelligent algorithm

WANG Yong-zhia, TIAN Penga, LI Fu-shengb, SUN Ji-hongb,c, SUN Chena, LIU Zhen-yanga, LIU Niand, QIAN Yea,c,e   

  1. a. College of Big Data (College of Information Engineering); b. College of Agronomy and Biotechnology; c. The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province; d. College of Landscape and Horticulture; e. Yunnan Agricultural Big Data Engineering and Technology Research Center, Yunnan Agricultural University, Kunming 650201, China
  • Received:2023-09-15 Published:2024-08-25 Online:2024-09-05

摘要: 构建基于智能算法的甘蔗产量预测模型,对云南省8个甘蔗产区甘蔗产量进行预测。选取云南省临沧市、德宏傣族景颇族自治州、普洱市、文山壮族苗族自治州、红河哈尼族彝族自治州、保山市、西双版纳傣族自治州、玉溪市2000—2020年每日的气象、土壤数据及产量数据,通过专家打分法初步筛选对甘蔗产量影响较大的气象、土壤因子,应用逐步回归分析算法筛选甘蔗生长周期内的气候、土壤关键影响因子。在数据集划分和筛选关键影响因子的基础上,以每年气象、土壤因子作为输入变量,以每年甘蔗产量为输出变量,建立了BP神经网络产量预测模型。以每日和每年的气象、土壤因子作为输入向量,以甘蔗产量为输出变量,建立了长短期记忆网络(LSTM)神经网络产量预测模型。测试集结果表明,BP神经网络模型决定系数(R2)为0.916、平均绝对误差(MAE)为28.65万t、均方根误差(RMSE)为40.83万t,LSTM神经网络模型R2为0.978、MAE为16.04万t、RMSE为20.72万t。LSTM神经网络模型预测精度高,模型性能优良,能较好地预测云南省甘蔗产量。

关键词: 智能算法, 甘蔗, BP神经网络, 长短期记忆网络(LSTM)神经网络, 产量预测, 云南省

Abstract: A sugarcane yield prediction model based on intelligent algorithm was constructed to predict sugarcane yield in eight sugarcane production areas in Yunnan Province. Daily meteorological and soil data and yield data of Lincang, Dehong, Pu’er, Wenshan, Honghe, Baoshan, Xishuangbanna, and Yuxi of Yunnan Province for the period of 2000 to 2020 were selected, and the meteorological and soil factors that had a greater impact on the yield of sugarcane were preliminarily screened by the expert scoring method. Stepwise regression analysis algorithm was applied to screen the key influence factors of climate and soil during the growth cycle of sugarcane. Based on the division of the data set and the screening of the key influencing factors, a BP neural network yield prediction model was established with the annual meteorological and soil factors as the input variables and the annual sugarcane yield as the output variable. A Long Short-Term Memory (LSTM) neural network yield prediction model was developed using daily and annual meteorological and soil factors as input vectors and sugarcane yield as the output variable. The results of the test set showed that the coefficient of determination (R2) of the BP neural network model was 0.916, the mean absolute error (MAE) was 286 500 tons, and the root mean square error (RMSE) was 408 300 tons, and the R2 of the LSTM neural network model was 0.978, the MAE was 160 400 tons, and the RMSE was 207 200 tons. The prediction accuracy of the LSTM neural network model was high, and the model performance was excellent and could better predict the sugarcane yield in Yunnan.

Key words: intelligent algorithm, sugarcane, BP neural network, long and short term memory network (LSTM) neural network, yield prediction, Yunnan Province

中图分类号: