湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 121-125.doi: 10.14088/j.cnki.issn0439-8114.2024.08.021

• 生产生长模型 • 上一篇    下一篇

基于EMD-PSO-ARIMA模型的农产品价格预测

尚俊平, 李文浩, 席磊, 刘合兵   

  1. 河南农业大学信息与管理科学学院,郑州 450046
  • 收稿日期:2023-02-25 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 刘合兵(1972-),男,河南台前人,教授,硕士,主要从事数据挖掘研究,(电话)13838091929(电子信箱)liuhebing@henau.edu.cn。
  • 作者简介:尚俊平(1973-),女,河南新乡人,副教授,硕士,主要从事数据挖掘研究,(电话)13526729029(电子信箱)shangjunping@163.com。

Agricultural product price prediction based on EMD-PSO-ARIMA model

SHANG Jun-ping, LI Wen-hao, XI Lei, LIU He-bing   

  1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
  • Received:2023-02-25 Published:2024-08-25 Online:2024-09-05

摘要: 针对农产品价格数据的非线性特点,提出基于EMD-PSO-ARIMA模型的农产品价格预测模型。首先利用EMD算法消除价格数据的不平稳性,其次应用PSO算法优化ARIMA模型的滞后参数,并对原始数据分解后的序列进行预测,最后对多个预测值进行累加得到最终结果。以河南省某农贸市场2004年1月至2021年12月鳞茎类作物(以大蒜为例)、根茎类作物(以马铃薯为例)及叶菜类作物(以白菜为例)的价格数据为研究对象进行实证研究。对大蒜、马铃薯、白菜价格进行预测,EMD-PSO-ARIMA模型的RMSE分别为0.029 5、0.016 8、0.066 9,MAE分别为0.027 4、0.018 9、0.059 8,MAPE分别为0.32%、0.64%、2.54%;与ARIAM、PSO-ARIMA、EMD-ARIMA模型相比,EMD-PSO-ARIMA模型的3个评价指标均有不同程度的降低,模型预测精度最高。EMD-PSO-ARIMA模型能够有效对3种农产品的价格做出精准预测,在一定程度上提高了模型预测性能,能够为农业生产者、经营者、政府提供决策支持,维护农业市场的稳定。

关键词: EMD-PSO-ARIMA模型, 农产品价格, 预测

Abstract: In response to the nonlinear characteristics of agricultural product price data, a price prediction model for agricultural products based on the EMD-PSO-ARIMA model was proposed. Firstly, the EMD algorithm was used to eliminate the instability of price data,secondly, the PSO algorithm was applied to optimize the lag parameters of the ARIMA model and predict the sequence after decomposing the original data,finally, multiple predicted values were accumulated to obtain the final result. Empirical research was conducted on the price data of bulb crops (using garlic as an example), rhizome crops (using potatoes as an example), and leafy vegetables (using cabbage as an example) at a farmer’s market in Henan Province from January 2004 to December 2021. The RMSE of the EMD-PSO-ARIMA model for predicting prices of garlic, potatoes, and cabbage was 0.029 5, 0.016 8, and 0.066 9, respectively,MAE was 0.027 4, 0.018 9, 0.059 8, respectively, and MAPE were 0.32%, 0.64%, and 2.54%, respectively;compared with ARIAM, PSO-ARIMA, and EMD-ARIMA models, the three evaluation indicators of the EMD-PSO-ARIMA model had all decreased to varying degrees, and the model had the highest prediction accuracy. The EMD-PSO-ARIMA model could effectively make accurate predictions on the prices of three agricultural products, improving the predictive performance of the model to a certain extent. It could provide decision support for agricultural producers, operators, and governments, and maintain the stability of the agricultural market.

Key words: EMD-PSO-ARIMA model, agricultural product price, prediction

中图分类号: