湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 85-91.doi: 10.14088/j.cnki.issn0439-8114.2024.08.015

• 生产生长模型 • 上一篇    下一篇

基于集成学习算法和WOFOST模型的小麦生长模拟分析与产量预测

李博, 张婧婧, 雷嘉诚, 杜云   

  1. 新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
  • 收稿日期:2024-03-04 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 张婧婧(1981-),女,湖南宁乡人,副教授,主要从事农业信息化技术研究,(电话)18999164538(电子信箱)zjj@xjau.edu.cn。
  • 作者简介:李 博(1998-),男,安徽宣城人,硕士,主要从事智慧农业研究,(电话)17756444100(电子信箱)3480861364@qq.com。
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2022A02011-2); 科技创新2030——“新一代人工智能”重大项目(2022ZD0115805)

Simulation analysis and yield prediction of wheat growth based on ensemble learning algorithm and WOFOST model

LI Bo, ZHANG Jing-jing, LEI Jia-cheng, DU Yun   

  1. College of Computer and Information Engineering/Engineering Research Center of Intelligent Agriculture, Ministry of Education/Xinjiang Agricultural Informatization Engineering Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2024-03-04 Published:2024-08-25 Online:2024-09-05

摘要: 针对传统单一作物生长模型和机器学习模型在预测上的限制,将WOFOST模型与灌溉模型结合,利用集成学习算法建立多模型耦合系统(WOFOST耦合模型),选用美国航空航天局(NASA)1990—2020年数据进行模拟试验,选取2006年、2018年展示试验成果。结果表明,WOFOST耦合模型的小麦叶面积指数、总生物量均高于WOFOST模型,WOFOST耦合模型更贴近实际生产活动。耦合算法的MAEMSE均低于Bagging、Boosting、Stacking算法,分别为2.836、7.581,R2均高于Bagging、Boosting、Stacking算法,高达0.942。WOFOST耦合模型更全面和准确地模拟作物生长状态,提高产量预测的准确性与可信度。

关键词: 集成学习算法, WOFOST模型, 小麦生长, 模拟, 产量预测, 耦合

Abstract: In response to the limitations of traditional single crop growth models and machine learning models in prediction, the WOFOST model was combined with irrigation models, and an ensemble learning algorithm was used to establish a multi model coupling system (WOFOST coupling model),simulated experiments were conducted using data from NASA from 1990 to 2020, and experimental results were presented in 2006 and 2018. The results showed that the leaf area index and total biomass of wheat in the WOFOST coupled model were higher than those in the WOFOST model, and the WOFOST coupled model was closer to actual production activities.The MAE and MSE of the coupled algorithm were lower than those of the Bagging, Boosting, and Stacking algorithms, with values of 2.836 and 7.581, respectively. The R2 was higher than that of the Bagging, Boosting, and Stacking algorithms, with a value as high as 0.942. The WOFOST coupled model provided a more comprehensive and accurate simulation of crop growth status, improving the accuracy and credibility of yield prediction.

Key words: ensemble learning algorithm, WOFOST model, wheat growth, simulation, yield prediction, coupling

中图分类号: