湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 116-120.doi: 10.14088/j.cnki.issn0439-8114.2024.08.020

• 生产生长模型 • 上一篇    下一篇

基于小样本的小麦施氮量预测方法

杜云, 张婧婧, 韩博, 鲁子翱   

  1. 新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
  • 收稿日期:2024-03-25 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 张婧婧(1981-),女,湖南宁乡人,副教授,主要从事农业信息化技术研究,(电话)18999164538(电子信箱)zjj@xjau.edu.cn。
  • 作者简介:杜 云(1997-),男,河北保定人,在读硕士研究生,研究方向为智慧农业,(电话)17733765315(电子信箱)1137072153@qq.com。
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2022A02011-2); 科技创新2030——“新一代人工智能”重大项目(2022ZD0115805)

A small sample based method for predicting nitrogen application rates in wheat

DU Yun, ZHANG Jing-jing, HAN Bo, LU Zi-ao   

  1. College of Computer and Information Engineering/Engineering Research Center of Intelligent Agriculture, Ministry of Education/Xinjiang Agricultural Informatization Engineering Technology Research Center, Xinjiang Agricultural University , Urumqi 830052, China
  • Received:2024-03-25 Published:2024-08-25 Online:2024-09-05

摘要: 针对小麦(Triticum aestivum L.)生长周期施肥试验数据少、使用传统预测方法难以进行有效施肥预测的问题,提出一种基于SBS (SMOTE+ Bootstrap)数据扩充方法的XGBoost算法预测模型。基于原始的135条施氮量数据划分训练集(80%)和测试集(20%),使用SMOTE方法对训练集和测试集分别进行均衡化处理,以获取更多的特征信息,然后使用Bootstrap方法对均衡化后的数据进行扩充,最后使用XGBoost预测模型进行训练,并与其他机器学习模型进行对比分析。结果表明,使用SMOTE方法均衡数据,较大程度地提高了SBS-XGBoost模型的预测精度,MSE从原始数据的66.802下降至13.027,MAE从原始数据的6.711下降至2.393,R2从原始数据的0.390上升至0.912。SBS-XGBoost不仅在研究施氮量的预测中表现出色,还能为其他小样本数据的科学预测提供借鉴与参考。

关键词: 小麦(Triticum aestivum L.), 小样本, 施氮量, 预测

Abstract: A XGBoost algorithm prediction model based on SBS (SMOTE+Bootstrap) data augmentation method was proposed to address the problem of limited data on fertilization experiments during the growth cycle of wheat (Triticum aestivum L.) and difficulty in effectively predicting fertilization using traditional prediction methods. Based on the original 135 nitrogen application data, the training set (80%) and the test set (20%) were divided. The SMOTE method was used to balance the training and test sets to obtain more feature information. Then, the Bootstrap method was used to expand the balanced data. Finally, the XGBoost prediction model was used for training and compared with other machine learning models. The results showed that using the SMOTE method to balance data significantly improved the prediction accuracy of the SBS-XGBoost model. MSE decreased from the original data of 66.802 to 13.027, MAE decreased from the original data of 6.711 to 2.393, and R2 increased from the original data of 0.390 to 0.912. SBS-XGBoost not only performed well in predicting nitrogen application rates in this study, but also provided reference and guidance for scientific prediction of other small sample data.

Key words: wheat (Triticum aestivum L.), small sample, nitrogen application rate, prediction

中图分类号: