[1] The Intergovernmental Panel on Climate Change. Climate Change2023:Synthesis Report[R/OL].(2023-03-20)[2025-02-01]. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf. [2] 徐富贤,周兴兵,张林,等.气候变暖对稻米品质的影响与杂交组合及其亲本的关系[J].中国生态农业学报(中英文),2024(12):2056-2069. [3] ZHAO C, LIU B, PIAO S L, et al.Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(35): 9326-9331. [4] VERMA V, VISHAL B, KOHLI A, et al.Systems-based rice improvement approaches for sustainable food and nutritional security[J]. Plant cell reports, 2021, 40(11): 2021-2036. [5] MAESTRI E, KLUEVA N, PERROTTA C, et al.Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant molecular biology, 2002, 48(5-6): 667-681. [6] 方先文,汤陵华,王艳平.水稻孕穗期耐热种质资源的初步筛选[J].植物遗传资源学报,2006,7(3):3342-3344. [7] 谭中和,蓝泰源,任昌福,等.杂交籼稻开花期高温危害及其对策的研究[J].作物学报,1985,11(2):103-108. [8] 朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影响[J].中国农业科学,1983,16(2):37-44. [9] 汪寿康,汪更文,汪又佳.2003年水稻高温热害情况的调查[J].安徽农学通报,2004,10(1):27-27,35. [10] 段骅. 抽穗灌浆期高温对水稻品质和内源激素的影响[D].江苏扬州:扬州大学,2010. [11] 陈双龙,金标.两系杂交稻耐热性研究初报[J].福建稻麦科技,2005,23(1):6-7. [12] 宋超新,黄意,李洪洲,等.湖北省39个中稻品种2022年度耐热性鉴定与利用评价[J].种子,2024,43(1):84-91. [13] 高园,沈升,刘科,等.杂交水稻新品种在自然高温下的耐热性评价[J].杂交水稻,2019,34(6):68-74. [14] 郭晓艺,熊洪,张林,等.杂交水稻恢复系和杂交组合的耐热性评价[J].中国生态农业学报,2018,26(9):1343-1354. [15] 焦颖瑞,李玲依,杨仕会,等.长江上游水稻耐热性鉴定模型的构建与应用[J].西南大学学报(自然科学版),2022,44(11):39-50. [16] 谭江,黎用朝,潘孝武,等.高温天气对水稻开花结实和品质的影响[J].应用与环境生物学报,2013,19(6):935-940. [17] 周云飞,何红丽,秦凤英,等.杂交中稻新品种安全跟踪评价[J].农业与食品科学,2023,3(1):11-14. [18] JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of experimental botany, 2010, 61(1): 143-156. [19] JAGADISH S V K, WAY D A, SHARKEY T D. Plant heat stress: Concepts directing future research[J]. Plant, cell & environment, 2021, 44(7): 1992-2005. [20] 季平,刘金龙,柳浩,等.抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J].作物杂志,2024(1):117-125. [21] WANG Y L,WANG L,ZHOU J X,et al.Research progress on heat stress of rice at flowering stage[J]. Rice science,2019,26(1):1-10. [22] 张桂莲,廖斌,武小金,等.高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响[J].植物生理学报,2014,50(12):1840-1844. [23] 徐恒,郭小雨,朱英.灌浆期高温影响水稻胚乳储藏物质代谢相关基因表达的研究[J].植物生理学报,2013,49(8):793-802. [24] YANG W F, XIONG L, LIANG J Y, et al.Substitution mapping of two closely linked QTLs on chromosome 8 controlling grain chalkiness in rice[J]. Rice, 2021, 14(1): 85. [25] 查贵庭. 中国稻米市场需求及整合研究[D].南京:南京农业大学,2005. [26] LIU G, QIU D F, LU Y X, et al.Identification of superior haplotypes and haplotype combinations for grain size- and weight-related genes for breeding applications in rice (Oryza sativa L.)[J]. Genes, 2023, 14(12): 2201. [27] 刘燕德,欧阳爱国.水稻粒形与稻米品质的相关性试验[J].农机化研究,2004,26(5):194-195. [28] 刘刚,夏快飞,吴艳,等.水稻耐热新种质R203的创制与应用[J].中国农业科学,2023,56(3):405-415. [29] 魏祥进,胡培松,鲁菲菲,等.一种创制水稻高产优质的方法[P]. 中国专利:CN115785242A,2023-03-14. [30] LIU H Q,ZENG B H,ZHAO J L,et al.Genetic research progress: Heat tolerance in rice[J]. International journal of molecular sciences, 2023, 24(8): 7140. [31] LI X M, CHAO D Y, WU Y, et al.Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature genetics, 2015, 47(7): 827-833. [32] KAN Y, MU X R, ZHANG H, et al.TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature plants, 2022, 8(1): 53-67. [33] ZHANG H, ZHOU J F, KAN Y, et al.A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. |