[1] 吕志远,张付杰,魏晓明,等.采用组合增强的YOLOX-ViT协同识别温室内番茄花果[J].农业工程学报,2023,39(4):124-134. [2] 张振国,邢振宇,赵敏义,等.改进YOLOv3的复杂环境下红花丝检测方法[J].农业工程学报,2023,39(3):162-170. [3] 张日红,区建爽,李小敏,等.基于改进YOLOv4的轻量化菠萝苗心检测算法[J].农业工程学报,2023,39(4):135-143. [4] 欧阳雪,徐彦彦,毛养素,等.云计算与区块链平台的遥感影像安全检索方案[J].电子与信息学报,2023,45(3):856-864. [5] 李丹,邓飞,赵良玉,等.基于深度学习的无人机自主降落标识检测方法[J].航空兵器,2023,30(5):115-120. [6] DAVID E,MADEC S,SADEGHI-TEHRAN P, et al.Global wheat head detection (GWHD) dataset: A large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods[J]. Plant phenomics, 2020, 2020:3521852. [7] 章倩丽,李秋生,胡俊勇,等.基于PP-YOLO改进算法的脐橙果实实时检测[J].北京联合大学学报,2022,36(4):58-66. [8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J].[2023-06-10].http://arxiv.org/PDF/2004.10934. [9] ZHANG Z, LU X, CAO G, et al.ViT-YOLO: Transformer-based YOLO for object detection[A]. 2021 IEEE/CVF international conference on computer vision workshops (ICCVW)[C].IEEE, 2021.2799-2808. [10] WANG X, SONG J.ICIoU: Improved loss based on complete intersection over union for bounding box regression[J]. IEEE Access, 2021.105686-105695. [11] 江明哲. 基于深度学习的复杂环境下番茄目标检测与定位技术研究[D].重庆:重庆邮电大学,2022. [12] WANG K, LIEW J H, ZOU Y, et al.Panet: Few-shot image semantic segmentation with prototype alignment[A].2021 IEEE/CVF international conference on computer vision workshops (ICCVW)[C].IEEE, 2019.9197-9206. [13] WOO S, PARK J,LEE J Y, et al.Cbam: Convolutional block attention module[A].2021 IEEE/CVF international conference on computer vision workshops (ICCVW)[C].IEEE, 2018. 3-19. [14] GE Z, LIU S, WANG F, et al.Yolox: Exceeding yolo series in 2021[J]. arXiv, 2021, 2107:08430. [15] ZHANG S, CHI C, YAO Y, et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[A]. 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR)[C]. IEEE, 2020.9759-9768. [16] 肖天元,艾廷华,余华飞,等.地图综合图卷积神经网络点群简化方法[J].测绘学报,2024,53(1): 158-172. [17] 夏雪,柴秀娟,张凝,等.用于边缘计算设备的果树挂果量轻量化估测模型[J].智慧农业(中英文),2023,5(2): 1-12. [18] ZHANG X, ZHOU X, LIN M, et al.Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. 2018 IEEE conference on computer vision and pattern recognition(CVPR)[C].IEEE, 2018.6848-6856. [19] MA N, ZHANG X, ZHENG H T, et al.Shufflenet v2: Practical guidelines for efficient cnn architecture design[A]. 15th European conference on computer vision (ECCV)[C]. Springer, 2018.122-138. [20] 赵迪, 叶盛波, 周斌.基于Grad-CAM的探地雷达公路地下目标检测算法[J].电子测量技术,2020,43(10): 113-118. |