[1] 谢登峰,张锦水,潘耀忠,等.Landsat 8和MODIS融合构建高时空分辨率数据识别秋粮作物[J].遥感学报,2015,19(5):791-805. [2] 陈安旭,李月臣.基于Sentinel-2影像的西南山区不同生长期水稻识别[J].农业工程学报,2020,36(7):192-199. [3] 高永康,王腊红,陈家赢,等.一种利用形态相似性的水稻信息提取算法[J].遥感信息,2020,35(2):76-86. [4] 许童羽,胡开越,周云成,等.基于CART决策树和BP神经网络的landsat 8影像粳稻提取方法[J].沈阳农业大学学报,2020, 51(2):169-176. [5] 王建勋,华丽,邓世超,等.基于GF-1与MODIS时空融合的南方丘陵区水稻提取研究[J].中国农业资源与区划,2019,40(5):37-46. [6] 赵亚杰,黄进良,王立辉,等.基于时空融合NDVI及物候特征的江汉平原水稻种植区提取研究[J].长江流域资源与环境,2020,29(2):424-432. [7] 赖格英,杨星卫.南方丘陵地区水稻种植面积遥感信息提取的试验[J].应用气象学报,2000,11(1):47-56. [8] 李石,宋晓巍,张菁,等.基于遥感数据的沈阳水稻种植面积提取及精度分析[J].大麦与谷类科学,2016,33(4):63-66. [9] KUSSUL N,LAVRENIUK M,SKAKUN S,et al.Deep learning classification of land cover and crop types using remote sensing data[J].IEEE geoscience and remote sensing letters,2017,14(5):778-782. [10] WEI S,ZHANG H,WANG C,et al.Multi-temporal SAR data large-scale crop mapping based on U-Net model[J].Remote sensing,2019,11(1):68. [11] YANG X,YE Y,LI X,et al.Hyperspectral image classification with deep learning models[J].IEEE transactions on geoscience and remote sensing,2018,56(99):5408-5423. [12] ZHONG L,HU L,ZHOU H.Deep learning based multi-temporal crop classification[J].Remote sensing of environment,2019,221:430-443. [13] HUETE A,DIDAN K,MIURA T,et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J].Remote sensing of environment,2002,83(1-2):195-213. [14] BLITZER J C,MCDONALD R T,PEREIRA F C N. Domain adaptation with structural correspondence learning[A].Proceedings of conference on empirical methods in natural language processing[C].Sydney,Australia,2006.120-128. [15] PRETTENHOFER P,STEIN B B.Cross-language text classification using structural correspondence learning[A].Proceedings of 48th annual meeting of the association for computational linguistics[C]. Uppsala,Sweden,2010.1118-1127. [16] NAM J,FU W,KIM S,et al.Heterogeneous defect prediction[J].IEEE transactions on software engineering,2017,44(9):874-896. [17] ZHOU J T,PAN S J,TSANG I W,et al.Hybrid heterogeneous transfer learning through deep learning[A]. Proceedings of AAAI conference on artificial intelligence[C].Québec,Canada,2014.2213-2219. [18] 赵亮,吴立宗,彭红春,等.基于迁移学习的高分辨率遥感影像道路信息提取[J].江苏海洋大学学报(自然科学版),2020,29(2):69-72. [19] 周绍光,吴昊,赵婵娟,等.利用同质区特性的高光谱图像迁移学习分类[J].计算机工程与应用,2021,57(21):224-233. [20] MEI S,JI J,HOU J,et al.Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J].IEEE transactions on geoscience and remote sensing,2017,55(8):4520-4533. [21] WANG Z,DU B,SHI Q,et al.Domain adaptation with discriminative distribution and manifold embedding for hyperspectral image classification[J].IEEE transactions on geoscience and remote sensing,2019,16(7):1155-1159. [22] 施慧慧,徐雁南,滕文秀,等.高分辨率遥感影像深度迁移可变形卷积的场景分类法[J].测绘学报,2021,50(5):652-663. [23] 张帆. 面向高分辨率遥感影像分析的深度学习方法研究[D].武汉:武汉大学,2017. [24] 周瑜. 基于卷积神经网络的高分辨率遥感图像分类方法研究[D].重庆:重庆邮电大学,2018. [25] 王海军. 深度卷积神经网络在遥感影像分类的应用研究[D].北京:中国地质大学(北京),2018. [26] 许慧敏. 基于深度学习U-Net模型的高分辨率遥感影像分类方法研究[D].成都:西南交通大学,2018. [27] 闫苗,赵红东,李宇海,等.基于卷积神经网络的高光谱遥感地物多分类识别[J].激光与光电子学进展,2019,56(2):191-198. [28] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017,60(6):84-90. |