[1] 康士伟,孙水发,陈晓军,等.单帧图像超分辨率重建的深度神经网络综述[J].信息通信,2019(3):24-27. [2] DONG C, LOY C C, HE K, et al.Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(2): 295-307. [3] DONG C, LOY C C, TANG X O.Accelerating the super-resolution convolutional neural network[A]. European conference on computer vision[C]. Springer, Cham, 2016.391-407. [4] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2016.1874-1883. [5] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2016.1646-1654. [6] KIM J,LEE J K,LEE K M.Deeply-recursive convolutional network for image super-resolution[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2016.1637-1645. [7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[A]. Proceedings of the 27th international conference on neural information processing systems[C]. 2014.2672-2680. [8] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2017. 4681-4690. [9] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[A]. Proceedings of the 31st international conference on neural information processing systems[C], 2017.6000-6010. [10] ZHANG Y L, LI K P, LI K, et al.Image super-resolution using very deep residual channel attention networks[A].Proceedings of the European conference on computer vision (ECCV)[C]. 2018.286-301. [11] LIU Y, WANG Y C, LI N, et al.An attention-based approach for single image super resolution[A]. 2018 24Th international conference on pattern recognition (ICPR)[C]. IEEE, 2018. 2777-2784. [12] 梁俊杰,韦舰晶,蒋正锋.生成对抗网络GAN综述[J].计算机科学与探索,2020,14(1):1-17. [13] 秦铁鑫. 基于数据扩充的小样本学习算法研究[D].南京:南京大学,2021. [14] 王俊杰,焦柯,彭子祥,等.基于变分自编码器潜变量语义提炼的样本生成方法[J].计算机系统应用,2022,31(3):255-261. [15] 李会鹏,贺国,明廷锋.Bootstrap方法在机电设备振动状态阈值设定中的应用[J].舰船科学技术,2012,34(5):70-73,77. [16] 杨天乐,钱寅森,武威,等.基于Python爬虫和特征匹配的水稻病害图像智能采集[J].河南农业科学,2020,49(12):159-163. [17] 俞彬. 基于生成对抗网络的图像类别不平衡问题数据扩充方法[D].广州:华南理工大学,2018. [18] TREISMAN A M, GELADE G.A feature-integration theory of attention[J]. Cognitive psychology, 1980, 12(1): 97-136. [19] WOO S, PARK J, LEE J Y, et al.Cbam: Convolutional block attention module[A]. Proceedings of the European conference on computer vision (ECCV)[C]. 2018. 3-19. [20] 佟雨兵,张其善,祁云平.基于PSNR与SSIM联合的图像质量评价模型[J].中国图象图形学报,2006(12):1758-1763. |