[1] 国务院关于印发全国国土规划纲要(2016—2030年)的通知[EB/OL].https://www.gov.cn/zhengce/content/2017-02/04/content_5165309.htm,2017-02-04. [2] 魏森涛,王澄海,张飞民,等.基于土壤温、湿度记忆性的土壤湿度预测方法研究[J].干旱气象,2023,41(5):783-791. [3] 田宏武,郑文刚,李寒.大田农业节水物联网技术应用现状与发展趋势[J].农业工程学报,2016,32(21):1-12. [4] ONYENEKE R U,AMADI M U,NJOKU C L,et al.Climate change perception an duptake of climate-smart agriculture inriceproduction in EbonyiState, Nigeria[J].Atmosphere,2021,12(11):1503. [5] AL GHOBARI H M,DEWIDAR A Z.Integrating deficit irrigation into surface and subsurface dripirrigation asastrategy to save water in aridregions[J]. Agricultural water management, 2018,209:55-61. [6] YAN H,HUI X,LI M,et al.Development in sprink lerirrigation technology in China[J].Irrigation and drainage,2020,69(S2):75-87. [7] ZHOU J, HUANG Z.Recover missing sensor data with iterative imputing network[A].Workshops at the thirty-second AAAI conference on artificial intelligence[C]. Washington,USA:AAAI Press,2018. [8] 邓玉龙. 无线传感器网络缺失数据填补关键技术研究[D].南京:南京邮电大学,2023. [9] LITTLE R J A,RUBIN D B. Statistical analysis with missing data[M]. NewYork,USA:WileyandSonsInc,1987. [10] MAO Y C,ZHANG J H,QI H,et al.DNN-MVL:DNN-multi-view-learning-based recover block missing datain adam safety monitoring system[J].Sensors,2019,19(13):2895. [11] 许凯凯,张锐.基于SE-TCN的一维低采样卫星帆板温度遥测数据插补方法[J].中国科学院大学学报,2023,40(6):810-820. [12] 杨建明. 基于LSTM的不完整时序数据填补方法研究[D].辽宁大连:大连理工大学,2022. [13] SONG W,GAO C, ZHAO Y, et al.A time series data filling method based on LSTM—Taking the stem moisture as an example[J]. Sensors, 2020, 20(18): 5045. [14] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [15] 郭蕴颖,丁云峰.基于CNN和LSTM联合预测并修正的电量缺失数据预测[J].计算机系统应用,2020,29(8):192-198. [16] 杨凯. 基于CNN和双向GRU组合模型的短期电力负荷预测研究[D].黑龙江大庆:东北石油大学,2023. [17] SCHMIDHUBER J,HOCHREITER S.Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735-1780. [18] CUI Z, KE R, PU Z, et al.Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation research part C: Emerging technologies, 2020, 118: 102674. [19] 钱斌,郑楷洪,陈子鹏,等.基于残差连接长短期记忆网络的时间序列修复模型[J].计算机应用,2021,41(1):243-248. [20] 王子馨,胡俊杰,刘宝柱.基于长短期记忆网络的电力系统量测缺失数据恢复方法[J].电力建设,2021,42(5):1-8. [21] SHERSTINSKY A.Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear phenomena, 2020, 404: 132306. [22] KEERIN P, BOONGOEN T.Improved knn imputation for missing values in gene expression data[J]. Computers materials and continua, 2021, 70(2): 4009-4025. [23] 丁伟,邹复民,刘吉顺,等.基于CNN-BiLSTM-Attention的电动装载机电池荷电状态预测[J/OL].电源学报[2024-04-26].https://kns.cnki.net/kcms2/article/abstract?v=Mw9fkKjKljr47jg-Pr3TVOgdSlbY54upusWPCPIAMrkE2dmCDJfebJAfur6jzHb3HebhDdH2yWLUqS24F7nIZNA7VLO0TXL5BOM-_wHHHLRfiHA-kPj9qmjM49cG2gdnaXzY0Y9NlElCzB2k83Ol1DQx4R5ATa7S5VW9680mdVQapTcOUWmgnZZYuL_URx72&uniplatform=NZKPT &langu age=CHS. [24] HUSSAIN S N, ABD AZIZ A, HOSSEN M J, et al.A novel framework based on CNN-LSTM neural network for prediction of missing values in electricity consumption time-series datasets[J]. 2022,18(1):115-129. |