[1] 何中虎,庄巧生,程顺和,等.中国小麦产业发展与科技进步[J].农学学报,2018,8(1):99-106. [2] MA J C, LI Y X, DU K M, et al.Segmenting ears of winter wheat at flowering stage using digital images and deep learning[J]. Computers and electronics in agriculture, 2020, 168: 105159. [3] 陈森,徐伟峰,王洪涛,等.基于改进YOLOv7的麦穗检测算法[J].吉林大学学报(理学版),2024,62(4):886-894. [4] CHEN Y, ZHANG Z, TAO F L, et al.Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China[J]. Field crops research, 2017, 206: 11-20. [5] FERNANDEZ-GALLEGO J A, LOOTENS P, BORRA-SERRANO I, et al. Automatic wheat ear counting using machine learning based on RGB UAV imagery[J]. The plant journal,2020,103(4): 1603-1613. [6] HASAN M M, CHOPIN J P, LAGA H, et al.Detection and analysis of wheat spikes using convolutional neural networks[J]. Plant methods, 2018, 14(1): 100. [7] NAJAFIAN K, GHANBARI A, STAVNESS I, et al.A semi-self-supervised learning approach for wheat head detection using extremely small number of labeled samples[A].2021 IEEE/CVF international conference on computer vision workshops (ICCVW)[C]. Montreal, BC, Canada: IEEE, 2021.1342-1351. [8] ZHU G C, ZHAO C X, ZHOU L L, et al.Winter wheat yield prediction at a county scale using time series variation features of remote sensing spectra and machine learning[J]. European journal of agronomy, 2025, 170: 127751. [9] ZHU Y J, CAO Z G, LU H, et al.In-field automatic observation of wheat heading stage using computer vision[J]. Biosystems engineering, 2016, 143: 28-41. [10] ALHARBI N, ZHOU J, WANG W.Automatic counting of wheat spikelets from time-lapse wheat plant growth images[J]. IEEE journal of pattern analysis and applications,2018,10: 346-355. [11] QIU R C,HE Y,ZHANG M.Automatic detection and counting of wheat spikelet using semi-automatic labeling and deep learning[J]. Frontiers in plant science, 2022, 13: 872555. [12] GANEVA D, ROUMENINA E, DIMITROV P, et al.Phenotypic traits estimation and preliminary yield assessment in different phenophases of wheat breeding experiment based on UAV multispectral images[J]. Remote sensing, 2022, 14(4): 1019. [13] PRAKASH K, SARAVANAMOORTHI P, SATHISHKUMAR R, et al.A study of image processing in agriculture[J]. International journal of advanced networking and applications, 2017, 9(1): 3311. [14] FERNANDEZ-GALLEGO J A, KEFAUVER S C, GUTIÉRREZ N A, et al. Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images[J]. Plant methods, 2018, 14(1): 22. [15] TAN C W, ZHANG P P, ZHANG Y J, et al.Rapid recognition of field-grown wheat spikes based on a superpixel segmentation algorithm using digital images[J]. Frontiers in plant science, 2020, 11: 259. [16] SADEGHI-TEHRAN P, VIRLET N, AMPE E M, et al.DeepCount: In-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks[J]. Frontiers in plant science, 2019, 10: 1176. [17] ZHOU C Q, LIANG D, YANG X D, et al.Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms[J]. Remote sensing, 2018, 10(2): 246. [18] MISRA T, ARORA A, MARWAHA S, et al.SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging[J]. Plant methods, 2020, 16(1): 40. [19] LI L, HASSAN M A, YANG S R, et al.Development of image-based wheat spike counter through a Faster R-CNN algorithm and application for genetic studies[J]. The crop journal,2022,10(5): 1303-1311. [20] XIONG H P, CAO Z G, LU H, et al.TasselNetv2: In-field counting of wheat spikes with context-augmented local regression networks[J]. Plant methods, 2019, 15(1): 150. [21] BHAGAT S, KOKARE M, HASWANI V, et al.WheatNet-lite: A novel light weight network for wheat head detection[A].2021 IEEE/CVF international conference on computer vision workshops (ICCVW)[C]. Montreal, BC, Canada:IEEE, 2021.1332-1341. [22] LU H, CAO Z G.TasselNetV2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery[J]. Frontiers in plant science, 2020, 11: 541960. [23] SANAEIFAR A, GUINDO M L, BAKHSHIPOUR A, et al.Advancing precision agriculture: The potential of deep learning for cereal plant head detection[J]. Computers and electronics in agriculture, 2023, 209: 107875. [24] ZHAO J Q, YAN J W, XUE T J, et al.A deep learning method for oriented and small wheat spike detection (OSWSDet) in UAV images[J]. Computers and electronics in agriculture, 2022, 198: 107087. [25] 王琳毅,白静,李文静,等.YOLO系列目标检测算法研究进展[J].计算机工程与应用,2023,59(14):15-29. [26] JIANG P Y, ERGU D, LIU F Y, et al.A review of yolo algorithm developments[J]. Procedia computer science, 2022, 199: 1066-1073. [27] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[A].2016 IEEE conference on computer vision and pattern recognition (CVPR)[C]. Las Vegas, NV, USA: IEEE, 2016.779-788. [28] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[A].2017 IEEE conference on computer vision and pattern recognition (CVPR)[C]. Honolulu,HI,USA:IEEE, 2017.6517-6525. [29] REDMON J,FARHADI A. YOLOv3: An incremental improvement[EB/OL].(2018-04-08). https://arxiv.org/abs/1804.02767. [30] 万应霞,燕振刚.基于YOLO算法的农作物病虫害识别研究综述[J].热带农业工程,2024,48(1):25-28. [31] 陈丰,李娜,苏祥祥,等.YOLO系列算法在草莓识别领域中的应用[J].山东农业工程学院学报,2024,41(6):30-38. [32] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934. [33] 张立夫. 基于深度学习和图像处理的小麦穗部表型参数获取方法研究[D].合肥:安徽农业大学,2023. [34] YANG B H, GAO Z W, GAO Y, et al.Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module[J]. Agronomy, 2021, 11(6): 1202. [35] ZHAO F K, XU L Z, LV L Y, et al.Wheat ear detection algorithm based on improved YOLOv4[J]. Applied sciences, 2022, 12(23): 12195. [36] JAISWAL S K, AGRAWAL R.A comprehensive review of YOLOv5: Advances in real-time object detection[J]. International journal of innovative research in computer science and technology, 2024, 12(3): 75-80. [37] LI R, WU Y P.Improved YOLOv5 wheat ear detection algorithm based on attention mechanism[J]. Electronics, 2022, 11: 1673. [38] SHI L, SUN J Y, DANG Y B, et al.YOLOv5s-T: A lightweight small object detection method for wheat spikelet counting[J]. Agriculture, 2023, 13(4): 872. [39] LI C Y, LI L L, JIANG H L, et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07). https://arxiv.org/abs/2209.02976. [40] LI Z P, ZHU Y J, SUI S S, et al.Real-time detection and counting of wheat ears based on improved YOLOv7[J]. Computers and electronics in agriculture, 2024, 218: 108670. [41] WANG C Y, BOCHKOVSKIY A, LIAO H M.YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[A].2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR)[C].Vancouver, BC, Canada:IEEE, 2023.7464-7475. [42] XU X M, ZHOU L, YU H L, et al.Winter wheat ear counting based on improved YOLOv7x and Kalman filter tracking algorithm with video streaming[J]. Frontiers in plant science, 2024, 15: 1346182. [43] WU T L, ZHONG S Y, CHEN H, et al.Research on the method of counting wheat ears via video based on improved YOLOv7 and DeepSort[J]. Sensors, 2023, 23(10): 4880. [44] TERVEN J,CÓRDOVA-ESPARZA D M,ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine learning and knowledge extraction, 2023, 5(4): 1680-1716. [45] LI R, MENG J Y, WU Y P, et al.Wheat ear detection based on FasterCANet-YOLOv8s algorithm[J]. New Zealand journal of crop and horticultural science, 2025, 53(4): 1205-1225. [46] MA N, SU Y X, YANG L X, et al.Wheat seed detection and counting method based on improved YOLOv8 model[J]. Sensors, 2024, 24(5): 1654. [47] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: Learning what you want to learn using programmable gradient information[A].Computer vision ECCV[C]. Cham,Switzerland: Springer Nature,2024. [48] CHEN H, CHEN K, DING G G, et al.YOLOv10: Real-time end-to-end object detection[A].Advances in neural information processing systems 37[C]. Vancouver, BC, Canada:NeurIPS, 2024. 107984-108011. [49] GUAN S T, LIN Y M, LIN G Y, et al.Real-time detection and counting of wheat spikes based on improved YOLOv10[J]. Agronomy, 2024, 14(9): 1936. [50] LIU L, SUN T, LIU D, et al.Deep learning-based wheat ear recognition and counting[A].2025 2nd international conference on computer and multimedia technology[C]. Fujian:IEEE,2025. 283-288. [51] LI J B, LI C C, FEI S P, et al.Wheat ear recognition based on RetinaNet and transfer learning[J]. Sensors,2021,21(14): 4845. [52] 郝王丽,尉培岩,韩猛,等.基于YOLOv3网络的小麦麦穗检测及计数[J].湖北农业科学,2021,60(2):158-160,183. [53] GONG B, ERGU D,CAI Y,et al. A method for wheat head detection based on YOLOv4[EB/OL]. (2020-10-07).https://doi.org/10.21203/rs.3.rs-86158/v1. [54] JIA Z W, SHAO Y, HOU Y J, et al.An improved YOLOv4 method for rapid detection of wheat ears in the field[J]. INMATEH agricultural engineering, 2023,69(1): 185-194. [55] 黄硕,周亚男,王起帆,等.改进YOLOv5测量田间小麦单位面积穗数[J].农业工程学报,2022,38(16):235-242. [56] 鲍文霞,谢文杰,胡根生,等.基于TPH-YOLO的无人机图像麦穗计数方法[J].农业工程学报,2023,39(1):155-161. [57] SHEN X J, ZHANG C, LIU K, et al.A lightweight network for improving wheat ears detection and counting based on YOLOv5s[J]. Frontiers in plant science, 2023, 14: 1289726. [58] 苑迎春,耿俊,许楠,等.基于YOLO v8-TRP模型的小麦麦穗识别方法研究[J/OL].农业机械学报,2025:1-14(2025-07-15). https://kns.cnki.net/kcms2/article/abstractv=uSrlZFhNZxJPEEN57bW5v6qx30_p1oa3Oq8AR9XE-DT-6huqVPKKiMxVCmmu3Fr9VKIhV90JpUnszOivTij_fMVMd9yuqbO-IbMWCsiIIWBYANyMveIgG2AMRiv8iotcgHItl6oSmH1uvyO-EiqdS3I3fxk1Ceic_GdFLPSdX5nYPIcczOh2QQ==&uniplatform=NZKPT&language=CHShttps://kns.cnki.net/KCMS/detail/detail.aspxfilename=NYJX2 0250714004&dbname=CJFD&dbcode=CJFQ. [59] 韩桐鹤,张博涵,费帅鹏,等.基于无人机视频流的小麦穗数精准监测研究[J/OL].麦类作物学报,2025:1-12(2025-07-09). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=MLZW202 50708003&dbname=CJFD&dbcode=CJFQ. |