[1] VICZIAN A,KLOSE C,ADAM E,et al.New insights of red light-induced development[J].Plant,cell & environment,2017, 40(11):2457-2468. [2] INOUE K,NISHIHAMA R,KOHCHI T.Evolutionary origin of phytochrome responses and signaling in land plants[J].Plant, cell & environment,2017,40(11):2502-2508. [3] XU X,PAIK I,ZHU L,et al.Illuminating progress in phytochrome-mediated light signaling pathways[J].Trends Plant Sci,2015,20(10):641-650. [4] PHAM V N,KATHARE P K,HUQ E.Phytochromes and phytochrome interacting factors[J].Plant physiology,2018,176(2):1025-1038. [5] KAMI C,LORRAIN S,HORNITSCHEK P,et al.Light-regulated plant growth and development[J].Curr Top Dev Biol,2010,91:29-66. [6] KLOSE C,VICZIAN A,KIRCHER S,et al.Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors[J].New Phytol,2015,206(3): 965-971. [7] KRAHMER J,GANPUDI A,ABBAS A,et al.Phytochrome,carbon sensing,metabolism,and plant growth plasticity[J].Plant physiology,2018,176(2):1039-1048. [8] WOITOWICH N C,HALAVATY A S,WALTZ P,et al.Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome[J].IUCrJ,2018,5:619-634. [9] NAGATANI A.Phytochrome:Structural basis for its functions[J].Curr Opin Plant Biol,2010,13(5):565-570. [10] BURGIE E S,BUSSELL A N,WALKER J M,et al.Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome[J].Proc Natl Acad Sci USA,2014,111(28):10179-10184. [11] FULLER F D,GUL S,CHATTERJEE R, et al.Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers[J].Nat Methods,2017,14(4):443-449. [12] BURGIE E S,ZHANG J,VIERSTRA R D.Crystal tructure of deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion[J].Structure,2016,24(3):448-457. [13] CHEN M,CHORY J.Phytochrome signaling mechanisms and the control of plant development[J].Trends Cell Biol,2011,21(11):664-671. [14] JANG I C,CHUNG P J,HEMMES H,et al.Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus[J].Plant cell,2011,23(2):459-470. [15] ZHOU Y Y,YANG L,DUAN J,et al.Hinge region of Arabidopsis phyA plays an important role in regulating phyA function[J].Proc Natl Acad Sci USA,2018,115(50):11864-11873. [16] PODOLEC R,ULM R.Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase[J].Curr Opin Plant Biol,2018,45(Pt A):18-25. [17] USHIJIMA T,HANADA K,GOTOH E,et al.Light controls protein localization through phytochrome-mediated alternative promoter selection[J].Cell,2017,171(6):1316-1325. [18] LU X D,ZHOU C M,XU P B,et al.Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis[J].Mol Plant,2015,8(3):467-478. [19] PARK E,KIM Y,CHOI G.Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions[J].Plant cell,2018,30(6):1277-1292. [20] BULATOV E,CIULLI A.Targeting Cullin-RING E3 ubiquitin ligases for drug discovery:Structure,assembly and small-molecule modulation[J].Biochem J,2015,467(3):365-386. [21] CAVADINI S,FISCHER E S,BUNKER R D,et al.Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome[J].Nature,2016,531(7596):598-603. [22] HUANG X,OUYANG X,DENG X W.Beyond repression of photomorphogenesis:Role switching of COP/DET/FUS in light signaling[J].Curr Opin Plant Biol,2014,21:96-103. [23] HOLTKOTTE X,PONNU J,AHMAD M,et al.The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling[J].PLoS Genet,2017, 13(10):e1007044. [24] SHEERIN D J,HILTBRUNNER A.Molecular mechanisms and ecological function of far-red light signalling[J].Plant cell environment,2017,40(11):2509-2529. [25] DUBREUIL C,JI Y,STRAND A,et al.A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development[J].Sci Rep,2017,7(1):13884. [26] LEE H J,JUNG J H,CORTES LLORCA L,et al.FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis[J].Nat Commun,2014,5:5473. [27] ZHANG Y,LIU Z,CHEN Y,et al.PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis[J].Plant Sci,2015,237:57-68. [28] LUO Q,LIAN H L,HE S B,et al.COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis[J].Plant cell,2014,26(6):2441-2456. [29] LEE N,CHOI G.Phytochrome-interacting factor from Arabidopsis to liverwort[J].Curr Opin Plant Biol,2017,35:54-60. [30] BURGIE E S,VIERSTRA R D.Phytochromes:An atomic perspective on photoactivation and signaling[J].Plant cell,2014, 26(12):4568-4583. [31] PENFIELD S,JOSSE E M,HALLIDAY K J.A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy[J].Plant Mol Biol,2010,73(1-2):89-95. [32] SHOR E,PAIK I,KANGISSER S,et al.PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis[J].New Phytol,2017,215(1):217-228. [33] QUINT M,DELKER C,FRANKLIN KA,et al.Molecular and genetic control of plant thermomorphogenesis[J].Nat Plants,2016,2:15190. [34] PAIK I,KATHARE P K,KIM J I,et al.Expanding roles of PIFs in signal integration from multiple processes[J].Mol Plant,2017,10(8):1035-1046. [35] LIU X,LI Y,ZHONG S W.Interplay between light and plant hormones in the control of arabidopsis seedling chlorophyll biosynthesis[J].Front Plant Sci,2017,8:1433. [36] ASADA K.Production and scavenging of reactive oxygen species in chloroplasts and their functions[J].Plant physiology,2006,141(2):391-396. [37] KRESLAVSKI V D,LOS D A,SCHMITT F J,et al.The impact of the phytochromes on photosynthetic processes[J].Biochim Biophys Acta Bioenerg,2018,1859(5):400-408. [38] SAKURABA Y,YANAGISAWA S.Light signalling-induced regulation of nutrient acquisition and utilisation in plants[J].Semin Cell Dev Biol,2018,83:123-132. [39] BROUWER B,GARDESTROM P,KEECH O.In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis[J].J Exp Bot,2014,65(14):4037-4049. [40] KRESLAVSKI V D,LYUBIMOV V Y,SHIRSHIKOVA G N, et al.Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A[J].J Photochem Photobiol B,2013,122:1-6. [41] PARKS B M,QUAIL P H.Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis[J].Plant cell,1991,3(11):1177-1186. [42] SOMERS D E,SHARROCK R A,TEPPERMAN J M,et al.The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B[J].Plant cell,1991,3(12):1263-1274. [43] KRESLAVSKI V D,SHIRSHIKOVA G N,LYUBIMOV V Y, et al.Effect of preillumination with red light on photosynthetic parameters and oxidant-/antioxidant balance in Arabidopsis thaliana in response to UV-A[J].J photochem photobiol B, 2013,127:229-236. [44] KHUDYAKOVA A Y,KRESLAVSKI V D,SHIRSHIKOVA G N,et al.Resistance of Arabidopsis thaliana L. photosynthetic apparatus to UV-B is reduced by deficit of phytochromes B and A[J].Journal of photochemistry and photobiology B:Biology,2017,169:41-46. [45] REED J W,NAGPAL P,POOLE D S,et al.Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development[J].Plant cell,1993,5(2):147-157. [46] WILTBANK L B,KEHOE D M.Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors[J].Nat Rev Microbiol,2019,17(1):37-50. |