湖北农业科学 ›› 2025, Vol. 64 ›› Issue (1): 162-167.doi: 10.14088/j.cnki.issn0439-8114.2025.01.026

• 农业工程 • 上一篇    下一篇

基于机器学习的保温被应用性能分析

朱寅宾1,2, 骆乾亮1,2, 雷喜红3, 牛曼丽3, 王平智1,2, 程杰宇1,2, 赵淑梅1,2   

  1. 1.中国农业大学水利与土木工程学院,北京 100083;
    2.农业农村部设施农业工程重点实验室,北京 100083;
    3.北京市农业技术推广站,北京 100029
  • 收稿日期:2024-06-07 发布日期:2025-02-20
  • 通讯作者: 牛曼丽(1986-),女,高级农艺师,主要从事设施农业相关技术及装备研究与示范推广工作,(电子信箱)manli.niu@hotmail.com。
  • 作者简介:朱寅宾(1998-),男,浙江柯城人,在读硕士研究生,研究方向为设施园艺工程,(电话)18767056312(电子信箱)zhuyb2016@cau.edu.cn。
  • 基金资助:
    现代农业产业技术体系北京市设施蔬菜创新团队项目(BAIC01-2024)

Performance analysis of insulation blanket application based on machine learning

ZHU Yin-bin1,2, LUO Qian-liang1,2, LEI Xi-hong3, NIU Man-li3, WANG Ping-zhi1,2, CHENG Jie-yu1,2, ZHAO Shu-mei1,2   

  1. 1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
    2. Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
    3. Beijing Agricultural Technology Extension Station, Beijing 100029, China
  • Received:2024-06-07 Online:2025-02-20

摘要: 为满足装配式日光温室夜间保温需要以及研发新型温室保温材料,探索了机器学习在温室环境评价方面的应用,比较分析了骆驼绒和橡塑板为保温芯材的两种新型保温被保温性能。结果表明,高斯回归过程和神经网络算法在温室温度预测方面具有良好的应用潜力。相较于骆驼绒保温被,橡塑板保温被能使温室夜间薄膜内表面平均温度提高0.8 ℃,最低夜间薄膜内表面温度平均提高0.6 ℃。对于橡塑板芯材,应当加强防风措施管理以保证实际保温效果。

关键词: 保温被, 薄膜内表面温度, 机器学习, 高斯过程回归, 神经网络算法

Abstract: To satisfy the nighttime insulation needs of prefabricated greenhouses and to develop novel insulation materials, the use of machine learning for evaluating greenhouse environments was investigated and the insulation efficacy of two new types of blankets was compared, one with camel hair and the other with rubber-plastic board as the core material. The findings indicated that both the Gaussian process regression and neural network algorithm held promise for predicting greenhouse temperatures. Compared to the camel hair blanket, the rubber-plastic insulation blanket increased the average night-time inner film surface temperature by 0.8 ℃ and the average minimum night-time temperature by 0.6 ℃. For the rubber-plastic board material, it was necessary to implement measures to mitigate wind resistance in greenhouses to guarantee the insulation’s effectiveness.

Key words: insulation blanket, film inner surface temperature, machine learning, Gaussian regression process, neural network algorithm

中图分类号: