湖北农业科学 ›› 2025, Vol. 64 ›› Issue (4): 202-210.doi: 10.14088/j.cnki.issn0439-8114.2025.04.033

• 经济·管理 • 上一篇    下一篇

组态视角下数字创新生态系统驱动农业生态效率提升的多元路径

李姝颖, 张子鹤, 张枥尹, 张丽娜   

  1. 河海大学商学院,南京 211100
  • 收稿日期:2024-12-20 出版日期:2025-04-25 发布日期:2025-05-12
  • 作者简介:李姝颖(2004-),女,江苏泰兴人,在读本科生,专业方向为数字创新与环境经济,(电子信箱)2263910106@hhu.edu.cn。
  • 基金资助:
    中央高校基本科研业务费项目(B230207036); 江苏省高等学校大学生创新创业训练计划项目(202410294250Y)

The pathways for enhancing agricultural ecological efficiency through the digital innovation ecosystem from the perspective of configuration

LI Shu-ying, ZHANG Zi-he, ZHANG Li-yin, ZHANG Li-na   

  1. Business School, Hohai University, Nanjing 211100,China
  • Received:2024-12-20 Published:2025-04-25 Online:2025-05-12

摘要: 构建考虑非期望产出的动态SBM-DEA模型,测算2013—2022年中国省级农业生态效率,在此基础上,运用动态模糊集定性分析法考察数字创新生态系统内数字创新环境、数字创新主体和数字创新资源3个要素对提升农业生态效率的多因素联动效应,探析中国农业生态效率提升的多元路径。结果表明,中国农业生态效率在2013—2022年整体呈增长态势,各地区间差异明显,表现为东部地区>中部地区>西部地区;识别出4种引致高农业生态效率的发展模式,分别为政策资本驱动型、数字技术驱动型、全要素驱动型和产业融合驱动型,4种发展模式虽然不存在明显的时间效应,但具有显著的地区效应,各省份在实现农业生态效率提升中并不遵循一致的组态路径。建议各地区选择合适的发展路径,采用差异化的战略,以数字创新生态系统发展带动地区农业生态效率的提升。

关键词: 数字创新生态系统, 农业生态效率, 组态分析, 动态模糊集定性分析法

Abstract: The dynamic SBM-DEA model considering undesired outputs was constructed to measure the agricultural ecological efficiency at provincial level in China from 2013 to 2022. On this basis, the dynamic fuzzy-set qualitative comparative analysis method was used to investigate the multi-factor linkage effects of the digital innovation environment, digital innovation subjects and digital innovation resources in the digital innovation ecosystem on improving agricultural ecological efficiency, and to explore the pluralistic paths to improve agricultural ecological efficiency in China. The results showed that the agricultural ecological efficiency in China showed an overall increasing trend from 2013 to 2022, with significant differences among regions. The order of the agricultural ecological efficiency in China from high to low was the eastern region, the central region and the western region. Four development models that led to high agricultural ecological efficiency were identified, which were policy capital driven type, digital technology driven type, full factor driven type, and industrial integration driven type. Although the four development models did not have obvious temporal effects, they had significant regional effects. Provinces did not follow a consistent configuration path in achieving high agricultural ecological efficiency. Each region should choose the right development path and adopt differentiated strategies to promote the improvement of regional agricultural ecological efficiency with the development of the digital innovation ecosystem.

Key words: digital innovation ecosystem, agricultural ecological efficiency, configuration analysis, dynamic fuzzy-set qualitative comparative analysis method

中图分类号: