湖北农业科学 ›› 2025, Vol. 64 ›› Issue (10): 61-68.doi: 10.14088/j.cnki.issn0439-8114.2025.10.010

• 资源·环境 • 上一篇    下一篇

基于熵权TOPSIS和XGBoost算法的耕地整治分区划定

窦邵华1,2,3, 杜顺季1,2,3   

  1. 1.广州市城市规划勘测设计研究院有限公司,广州 510060;
    2.广州市资源规划和海洋科技协同创新中心,广州 510060;
    3.广东省城市感知与监测预警企业重点实验室,广州 510060
  • 收稿日期:2025-03-12 出版日期:2025-10-25 发布日期:2025-11-14
  • 通讯作者: 杜顺季(1989-),男,高级工程师,硕士,主要从事自然资源调查监测、土地资源开发利用与保护研究,(电子信箱)799986131@qq.com。
  • 作者简介:窦邵华(1990-),男,河南鹤壁人,工程师,硕士,主要从事自然资源调查监测、耕地质量评价研究,(电子信箱)910732438@qq.com。
  • 基金资助:
    广东省城市感知与监测预警企业重点实验室基金项目(2020B121202019); 广州市城市规划勘测设计研究院有限公司科技基金项目(RDI2220201144)

Delimitation method of cultivated land remediation zoning based on entropy weight TOPSIS and XGBoost algorithms

DOU Shao-hua1,2,3, DU Shun-ji1,2,3   

  1. 1. Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou 510060, China;
    2. Colaboraive Innovation Center for Natural Resources Planning and Marine Technology of Guangzhou, Guangzhou 510060, China;
    3. Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou 510060, China
  • Received:2025-03-12 Published:2025-10-25 Online:2025-11-14

摘要: 以现状耕地作为评价单元,采用自然禀赋、区位条件和耕地连片性3个方面的影响因素构建耕地质量评价指标体系,通过熵权TOPSIS法计算得到现状耕地地块的综合评分,然后利用XGBoost算法对现状耕地的评价指标和综合评分数据进行训练并构建预测模型,结合可恢复耕地地块的评价指标数据和该预测模型可快速准确地得到可恢复耕地地块的综合评分,最后采用局部空间自相关法定量分析综合评价结果的空间集聚特征,并结合矩阵法确定耕地整治分区的划定。结果表明,番禺区耕地质量综合评价指标体系中影响较大的指标为土壤pH级别、耕地连片性和土壤质地级别;通过XGBoost算法构建的预测模型的R2达99.94%,表明模型预测效果好,验证了熵权TOPSIS算法在权重划定方面的准确性;番禺区优先整治区的可恢复耕地地块面积共1 935.56 hm2;番禺区优先整治区现状地类主要为园地,面积为1 139.44 hm2,与当地农业结构调整有很大相关性。通过熵权TOPSIS和XGBoost算法,综合考虑现状耕地和可恢复耕地资源空间集聚性的耕地整治分区划定方法,可以客观精准地识别耕地整治恢复地块。

关键词: 熵权TOPSIS法, XGBoost算法, 耕地质量, 耕地整治, 可恢复耕地, 局部空间自相关

Abstract: Taking the current cultivated land plots as the evaluation units, an evaluation index system for cultivated land quality was constructed based on three influencing factors: natural endowment, location conditions, and cultivated land contiguity. The comprehensive scores of the current cultivated land plots were calculated using the entropy-weighted TOPSIS method. Subsequently, the XGBoost algorithm was employed to train the evaluation indicators and comprehensive score data of the current cultivated land, thereby building a predictive model. By applying the evaluation indicator data of restorable cultivated land plots and this predictive model, the comprehensive scores of restorable cultivated land plots could be quickly and accurately obtained. Finally, the local spatial autocorrelation method was used to quantitatively analyze the spatial clustering characteristics of the comprehensive evaluation results, and the matrix method was applied to determine the delineation of cultivated land consolidation zones. The results indicated that the most influential indicators in the comprehensive evaluation index system for cultivated land quality in Panyu District were soil pH level, cultivated land contiguity, and soil texture level. The predictive model constructed using the XGBoost algorithm achieved an R2 of 99.94%, demonstrating excellent predictive performance and verifying the accuracy of the entropy-weighted TOPSIS algorithm in weight determination. The total area of restorable cultivated land plots in the priority consolidation zones of Panyu District was 1 935.56 hm2. The current land use types in these priority consolidation zones were mainly garden land, covering an area of 1 139.44 hm2, which was closely related to local agricultural structural adjustments. The method for delineating cultivated land consolidation zones, which integrated the entropy-weighted TOPSIS and XGBoost algorithms while considering the spatial aggregation of current cultivated land and restorable cultivated land resources, could objectively and accurately identify plots for cultivated land consolidation and restoration.

Key words: entropy weight TOPSIS method, XGBoost algorithms, quality of cultivated land, cultivated land remediation, restorable cultivated land, local spatial autocorrelation

中图分类号: