湖北农业科学 ›› 2025, Vol. 64 ›› Issue (11): 165-170.doi: 10.14088/j.cnki.issn0439-8114.2025.11.022

• 农业工程 • 上一篇    下一篇

基于数学变换和连续小波变换的苹果园土壤总氮含量高光谱反演

熊超群, 荀咪, 李健, 安淼, 李国田   

  1. 山东省果树研究所,山东 泰安 271001
  • 收稿日期:2025-04-27 出版日期:2025-11-25 发布日期:2025-12-05
  • 通讯作者: 李国田(1980-),男,山东聊城人,副研究员,硕士,主要从事果树育种与栽培工作,(电子信箱)ligt2008@163.com。
  • 作者简介:熊超群(1998-),女,山东东平人,硕士,主要从事果树栽培工作,(电话)18854808212(电子信箱)18854808212@163.com。
  • 基金资助:
    山东省重点研发计划(乡村振兴科技创新提振行动计划)项目(2024TZXD004); 山东省农业科学院农业科技创新工程项目(CXGC2024D20)

Hyperspectral inversion of soil total nitrogen content in an apple orchard based on mathematical transformation and continuous wavelet transform

XIONG Chao-qun, XUN Mi, LI Jian, AN Miao, LI Guo-tian   

  1. Shandong Institute of Pomology, Tai'an 271001, Shandong, China
  • Received:2025-04-27 Published:2025-11-25 Online:2025-12-05

摘要: 为快速测定苹果园土壤总氮(TN)含量,实现精准施肥,以山东省果树研究所天平湖基地苹果园的土壤为研究对象,测定其光谱反射率(R)并进行数学变换(倒数、对数、平方根及一阶微分等)、连续小波变换(Continuous wavelet transform,CWT)及数学变换结合CWT处理,采用Pearson相关分析法进行特征提取,基于支持向量回归(Support vector regression,SVR)构建土壤TN含量的高光谱反演模型。结果表明,原始光谱数据经CWT处理后,在21~210尺度内,小波系数与土壤TN含量的相关性呈先升高后降低的趋势,中等尺度能有效抑制噪声干扰并增强光谱与TN的相关性,效果显著。数学变换、CWT均能有效挖掘光谱的细节特征,CWT的效果总体上优于数学变换。数学变换结合CWT能显著提升模型反演精度,其中,1/R-CWT-28模型的反演效果最优(R2=0.73,RMSE=0.12 g/kg,RPD= 1.85)。该模型预测的土壤TN含量与实测值的拟合曲线更接近1:1线,模型预测精度较高。综上,高光谱技术可以作为苹果园土壤TN含量的无损检测手段,数学变换结合CWT构建的高光谱反演模型可以更加精准地预测土壤TN含量。

关键词: 数学变换, 连续小波变换(CWT), 苹果园, 土壤, 总氮含量, 高光谱, 反演

Abstract: To rapidly determine the soil total nitrogen (TN) content in an apple orchard and achieve precise fertilization, soil from the apple orchard at the Tianping Lake Base of the Shandong Institute of Pomology was taken as the research object. Its spectral reflectance (R) was measured and subjected to mathematical transformation (reciprocal, logarithm, square root, first-order derivative, etc.), continuous wavelet transform (CWT), and combined mathematical transformation and CWT processing. The Pearson correlation analysis method was used for feature extraction, and a hyperspectral inversion model for soil TN content was constructed based on support vector regression (SVR). The results showed that after processing the original spectral data with CWT, within the scale range of 21 to 210, the correlation between the wavelet coefficients and soil TN content first increased and then decreased. Medium scales effectively suppressed noise interference and enhanced the correlation between the spectrum and TN, with a significant effect. Both mathematical transformation and CWT effectively mined the detailed features of the spectrum, with the effect of CWT generally being superior to that of mathematical transformation. The combination of mathematical transformation and CWT significantly improved the model inversion accuracy. Among them, the 1/R-CWT-28 model demonstrated the best performance (R2=0.73, RMSE=0.12 g/kg, RPD = 1.85). The fitting curve between the soil TN content predicted by this model and the measured values was closer to the 1:1 line, indicating high model prediction accuracy. In conclusion, hyperspectral technology could be used as a non-destructive testing method for soil TN content in apple orchards. The hyperspectral inversion model constructed by combining mathematical transformation and CWT could more accurately predict soil TN content.

Key words: mathematical transformation, continuous wavelet transform (CWT), apple orchard, soil, total nitrogen content, hyperspectral, inversion

中图分类号: