湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 109-115.doi: 10.14088/j.cnki.issn0439-8114.2024.08.019

• 生产生长模型 • 上一篇    下一篇

基于CNN-BiLSTM和残差注意力的县域水稻产量预测模型

梁泽1, 曹姗姗2a,2b,3, 孔繁涛2c, 孙伟2a,2b,3   

  1. 1.新疆农业大学计算机与信息工程学院,乌鲁木齐 830052;
    2.中国农业科学院,a.农业信息研究所;b.国家农业科学数据中心;c.农业经济与发展研究所,北京 100081;
    3.中国农业科学院国家南繁研究院,海南 三亚 572024
  • 收稿日期:2024-02-27 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 孙 伟(1978-),男,山东海阳人,研究员,博士,主要从事农林时空信息智能分析研究,(电话)13691329164(电子信箱)sunwei02@caas.cn。
  • 作者简介:梁 泽(1997-),男,河北保定人,在读硕士研究生,主要从事农业信息化研究,(电话)16651614839(电子信箱)1723035444@qq.com。
  • 基金资助:
    国家自然科学基金面上项目(32271880)

County level rice yield prediction model based on CNN-BiLSTM and residual attention

LIANG Ze1, CAO Shan-shan2a,2b,3, KONG Fan-tao2c, SUN Wei2a,2b,3   

  1. 1. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
    2a. Agricultural Information Institute; 2b. National Agriculture Science Data Center; 2c. Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
    3. National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
  • Received:2024-02-27 Published:2024-08-25 Online:2024-09-05

摘要: 提出一种融合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和残差注意力(RA)机制的县域水稻产量预测模型(CNN-BiLSTM-RA),通过CNN层有效提取县域水稻气象数据中的关键空间特征,利用BiLSTM层深入分析时间序列数据的动态变化,引入RA机制强化对气象数据中关键特征的识别与捕捉,以2015—2017年广西81个县早稻历史产量和气象数据为样本,与CNN、TRANSFORMER、BiLSTM、CNN-BiLSTM、BiLSTM-RA模型进行对比,评价CNN-BiLSTM-RA模型的预测精度和有效性。结果表明,CNN-BiLSTM-RA模型的R2MAERMSEMAPE分别为0.986 1、0.121 9、0.224 8、0.864 8,模型的预测值与实际值拟合程度较高。CNN-BiLSTM-RA模型充分发挥了CNN的空间特征提取能力、BiLSTM的时间序列数据分析优势和RA机制在增强关键特征捕捉方面的特性,是一种适用于县域水稻产量高精度预测的新方法。

关键词: 水稻产量预测, 卷积神经网络, 双向长短期记忆网络, 残差注意力

Abstract: A county-level rice yield prediction model (CNN-BiLSTM-RA) was proposed, which integrated convolutional neural network (CNN), bidirectional long short term memory network (BiLSTM), and residual attention (RA) mechanism, key spatial features were effectively extracted from county-level rice meteorological data through CNN layers, the dynamic changes of time series data were deeply analyzed using BiLSTM layers, and RA mechanism was introduced to enhance the recognition and capture of key features in meteorological data. Using historical rice yield and meteorological data from 81 counties in Guangxi from 2015 to 2017 as samples, the prediction accuracy and effectiveness of the CNN-BiLSTM-RA model were compared with CNN, TRANSFORMER, BiLSTM, CNN-BiLSTM, and BiLSTM-RA models. The results showed that the R2, MAE, RMSE, and MAPE of the CNN-BiLSTM-RA model were 0.986 1, 0.121 9, 0.224 8, and 0.864 8, respectively, indicating a high degree of fit between the predicted and actual values of the model. The CNN-BiLSTM-RA model fully utilized the spatial feature extraction ability of CNN, the time series data analysis advantages of BiLSTM, and the RA mechanism’s ability to enhance key feature capture. It was a new method suitable for high-precision prediction of rice yield in counties.

Key words: rice yield prediction, convolutional neural network, bidirectional long short term memory network, residual attention

中图分类号: