湖北农业科学 ›› 2025, Vol. 64 ›› Issue (11): 31-39.doi: 10.14088/j.cnki.issn0439-8114.2025.11.004
张作林1, 武亚谨1,2, 李阳1, 汪本福1, 张枝盛1, 杨蓝天1, 谢艺1, 程建平1, 吴山3
收稿日期:2025-06-16
出版日期:2025-11-25
发布日期:2025-12-05
通讯作者:
程建平(1968-),湖北天门人,研究员,博士,主要从事水稻高产高效栽培研究,(电子信箱)chjp609@163.com。
作者简介:张作林(1992-),男,湖北松滋人,助理研究员,博士,主要从事水稻抗逆丰产栽培研究,(电子信箱)zzlin2022@hbaas.ac.cn;吴 山(1967-),湖北随州人,研究员,主要从事农业技术推广工作,(电子信箱)591095483@qq.com。
基金资助:ZHANG Zuo-lin1, WU Ya-jin1,2, LI Yang1, WANG Ben-fu1, ZHANG Zhi-sheng1, YANG Lan-tian1, XIE Yi1, CHENG Jian-ping1, WU Shan3
Received:2025-06-16
Published:2025-11-25
Online:2025-12-05
摘要: 全球气候变暖带来的增温效应严重威胁水稻的安全生产。与短期和偶发性高温胁迫不同,气候变暖下增温效应的温度增幅小,其实际影响与环境基温密切相关,具有叠加效应。增温在水稻的生长周期中表现出长期性和阶段性的特点,不能简单地等同于非生物逆境胁迫。为明确未来气候变暖对水稻生产可能产生的影响,已有较多研究开始关注增温效应对水稻生长发育的影响及其原因。综述了水稻产量形成和氮吸收利用过程对增温效应的响应及生理机制,比较了水稻生长发育对白天增温与夜间增温的响应差异,分析了未来水稻增温研究的方向和重点,以期为水稻稳产以及氮肥高效利用研究提供理论参考。
中图分类号:
张作林, 武亚谨, 李阳, 汪本福, 张枝盛, 杨蓝天, 谢艺, 程建平, 吴山. 增温对水稻产量形成和氮吸收利用影响的研究进展[J]. 湖北农业科学, 2025, 64(11): 31-39.
ZHANG Zuo-lin, WU Ya-jin, LI Yang, WANG Ben-fu, ZHANG Zhi-sheng, YANG Lan-tian, XIE Yi, CHENG Jian-ping, WU Shan. Research progress on the effects of warming on rice yield formation and nitrogen absorption and utilization[J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(11): 31-39.
| [1] XU W H, LI Q X, JONES P, et al.A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900[J]. Climate dynamics, 2018, 50(7): 2513-2536. [2] IPCC. Global warming of 1.5 ℃. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[M].Cambridge, UK:Cambridge university press, 2018. [3] IPCC. Climate change 2014 synthesis report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge university press,2014. [4] MATSUSHIMA S, TANAKA T, HOSHINO T.Analysis of yield-determining process and its application to yield-prediction and culture improvement of lowland rice: LXXI. combined effects of air-temperatures and water-temperatures at different stages of growth on the growth and morphological characteristics of rice plants[J]. Japanese journal of crop science, 1964, 33(2): 135-140. [5] FALCONE D L,OGAS J P,SOMERVILLE C R.Regulation of membrane fatty acid composition by temperature in mutants of [6] ZHU J K.Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. [7] PRASAD P V V,BOOTE K J, ALLEN L H, et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field crops research, 2006, 95(2-3): 398-411. [8] JAGADISH S V K, CRAUFURD P Q, WHEELER T R. High temperature stress and spikelet fertility in rice ( [9] KANNO K, MAE T, MAKINO A.High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants[J]. Soil science and plant nutrition, 2009, 55(1): 124-131. [10] 胡秋倩,闫娜,崔克辉.水稻颖花育性的高温伤害机理及其栽培调控措施[J].植物生理学报,2020,56(6):1177-1190. [11] OH-E I, SAITOH K, KURODA T.Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field[J]. Plant production science, 2007, 10(4): 412-422. [12] DONG W J, CHEN J, ZHANG B, et al.Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China[J]. Field crops research, 2011, 123(3): 259-265. [13] SHAH F, NIE L X, CUI K H, et al.Rice grain yield and component responses to near 2℃ of warming[J]. Field crops research, 2014, 157: 98-110. [14] CHENG W G, SAKAI H, YAGI K, et al.Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice ( [15] 任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报,2005,63(6):942-956. [16] 严中伟,丁一汇,翟盘茂,等.近百年中国气候变暖趋势之再评估[J].气象学报,2020,78(3):370-378. [17] PIAO S L, CIAIS P, HUANG Y, et al.The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51. [18] YUN X, HUANG B Y, CHENG J Y, et al.A new merge of global surface temperature datasets since the start of the 20th century[J]. Earth system science data, 2019, 11(4): 1629-1643. [19] EASTERLING D R, MEEHL G A, PARMESAN C, et al.Climate extremes: Observations, modeling, and impacts[J]. Science, 2000, 289(5487): 2068-2074. [20] LOBELL D B, BONFILS C, DUFFY P B.Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison[J]. Geophysical research letters, 2007, 34(5): L05715. [21] GIL-ALANA L A. Maximum and minimum temperatures in the United States: Time trends and persistence[J]. Atmospheric science letters, 2018, 19(4): e810. [22] 孔锋. 1961—2018年我国气温日较差日数的时空演变特征及区域差异[J].浙江大学学报(理学版),2020,47(4):422-434. [23] VOSE R S, EASTERLING D R, GLEASON B.Maximum and minimum temperature trends for the globe: An update through 2004[J]. Geophysical research letters, 2005, 32(23): L23822. [24] PENG S B, HUANG J L, SHEEHY J E, et al.Rice yields decline with higher night temperature from global warming[J]. Proceedings of the national academy of sciences of the United States of America, 2004, 101(27): 9971-9975. [25] RUIZ-VERA U M, SIEBERS M H, DRAG D W, et al. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2][J]. Global change biology, 2015, 21(11): 4237-4249. [26] GARCÍA G A, DRECCER M F, MIRALLES D J, et al. High night temperatures during grain number determination reduce wheat and barley grain yield: A field study[J]. Global change biology, 2015, 21(11): 4153-4164. [27] CAI C, YIN X Y, HE S Q, et al.Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global change biology,2016, 22(2): 856-874. [28] TUOMISTO H L, HODGE I D, RIORDAN P, et al.Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production[J]. Annals of applied biology, 2012, 161(2): 116-126. [29] ZHANG T Y, HUANG Y, YANG X G.Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice[J]. Global change biology, 2013, 19(2): 563-570. [30] 王啟梅,李岩,刘明,等.营养生长期高温对水稻生长及干物质积累的影响[J].中国稻米,2015,21(4):33-37. [31] LAZA M R C, SAKAI H, CHENG W G, et al. Differential response of rice plants to high night temperatures imposed at varying developmental phases[J]. Agricultural and forest meteorology, 2015, 209: 69-77. [32] PERAUDEAU S, ROQUES S, QUIÑONES C O, et al. Increase in night temperature in rice enhances respiration rate without significant impact on biomass accumulation[J]. Field crops research, 2015, 171: 67-78. [33] 张佳华,张健南,姚凤梅,等.开放式增温对东北稻田生态系统作物生长与产量的影响[J].生态学杂志,2013,32(1):15-21. [34] LIU Q H, WU X, LI T, et al.Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice[J]. Chilean journal of agricultural research, 2013, 73(2): 85-90. [35] 魏金连,潘晓华.夜温升高对双季水稻物质生产与养分吸收的影响[J].中国生态农业学报,2010,18(4):770-774. [36] 丁乐乐,程浩,刘增富,等.环境增温对稻麦轮作生态系统中作物产量的影响[J].植物科学学报,2013,31(1):49-56. [37] CHEN J, CHEN C, TIAN Y L, et al.Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions[J]. European journal of agronomy, 2017, 82: 80-92. [38] KRISHNA JAGADISH S V, WAY D A, SHARKEY T D. Plant heat stress: Concepts directing future research[J]. Plant, cell & environment, 2021, 44(7): 1992-2005. [39] FAHAD S, IHSAN M Z, KHALIQ A, et al.Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives[J]. Archives of agronomy and soil science, 2018, 64(11): 1473-1488. [40] 王亚梁,张玉屏,曾研华,等.水稻穗分化期高温对颖花分化及退化的影响[J].中国农业气象,2015,36(6):724-731. [41] MOHAMMED A R, TARPLEY L.High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility[J]. Agricultural and forest meteorology,2009,149(6-7): 999-1008. [42] 董文军,邓艾兴,张彬,等.开放式昼夜不同增温对单季稻影响的试验研究[J].生态学报,2011,31(8):2169-2177. [43] 曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J].作物学报,2008, 34(12):2134-2142. [44] YAO Y L, YAMAMOTO Y, YOSHIDA T, et al.Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles[J]. Soil science and plant nutrition, 2000, 46(3): 631-641. [45] 吴超. 生殖生长期高温对水稻产量形成的影响及其激素调控机理研究[D].武汉:华中农业大学,2016. [46] MATSUI T, OMASA K, HORIE T.High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice ( [47] TIAN X H, MATSUI T, LI S H, et al.Heat-induced floret sterility of hybrid rice ( [48] 江敏,金之庆,石春林,等.长江中下游地区水稻孕穗开花期高温发生规律及其对产量的影响[J].生态学杂志,2010,29(4):649-656. [49] KRISHNA JAGADISH S V,MUTHURAJAN R,RANG Z W, et al. Spikelet proteomic response to combined water deficit and heat stress in rice ( [50] DAS S, KRISHNAN P, NAYAK M, et al.High temperature stress effects on pollens of rice ( [51] 张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花粉粒性状及花药显微结构的影响[J].生态学报,2008,28(3):1089-1097. [52] RIEU I, TWELL D, FIRON N.Pollen development at high temperature: From acclimation to collapse[J]. Plant physiology, 2017, 173(4): 1967-1976. [53] FAHAD S.高温胁迫对水稻产量和品质的影响与化学调控的缓解效应与机理[D].武汉: 华中农业大学, 2015. [54] WANG W C, CUI K H, HU Q Q, et al.Response of spikelet water status to high temperature and its relationship with heat tolerance in rice[J]. The crop journal, 2021, 9(6): 1344-1356. [55] KOBAYASHI K, MATSUI T, MURATA Y, et al.Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivarsat high temperatures[J]. Plant production science, 2011, 14(2): 89-95. [56] RANG Z W, JAGADISH S V K, ZHOU Q M, et al. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice[J]. Environmental and experimental botany, 2011, 70(1): 58-65. [57] HEDHLY A, HORMAZA J I, HERRERO M.The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach[J]. Plant biology, 2005, 7(5): 476-483. [58] 杨志远. 增温对水稻生长发育、产量以及稻米品质的影响[J].武汉: 华中农业大学, 2018. [59] MATSUI T, OMASA K, HORIE T.The difference in sterility due to high temperatures during the flowering period among [60] 汤日圣,郑建初,张大栋,等.高温对不同水稻品种花粉活力及籽粒结实的影响[J].江苏农业学报,2006,22(4):369-373. [61] 张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花器官和产量构成要素及稻米品质的影响[J].湖南农业大学学报(自然科学版),2007,33(2):132-136. [62] CHENG W G, SAKAI H, YAGI K, et al.Interactions of elevated [CO2] and night temperature on rice growth and yield[J]. Agricultural and forest meteorology, 2009, 149(1): 51-58. [63] SHI W J, LI X, SCHMIDT R C, et al.Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant, cell & environment, 2018, 41(6): 1287-1297. [64] FU G F, FENG B H, ZHANG C X, et al.Heat stress is more damaging to superior spikelets than inferiors of rice ( [65] SCHAARSCHMIDT S, LAWAS L M F, GLAUBITZ U, et al. Season affects yield and metabolic profiles of rice ( [66] TEIXEIRA E I, FISCHER G, VAN VELTHUIZEN H, et al.Global hot-spots of heat stress on agricultural crops due to climate change[J]. Agricultural and forest meteorology, 2013, 170: 206-215. [67] 熊伟,冯灵芝,居辉,等.未来气候变化背景下高温热害对中国水稻产量的可能影响分析[J].地球科学进展,2016,31(5):515-528. [68] WANG P, ZHANG Z, CHEN Y, et al.How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?[J]. Climatic change, 2016, 134(4): 635-650. [69] 凌霄霞,张作林,翟景秋,等.气候变化对中国水稻生产的影响研究进展[J].作物学报,2019,45(3):323-334. [70] ZHAO C, LIU B, PIAO S L, et al.Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(35): 9326-9331. [71] LIN E D, XIONG W, JU H, et al.Climate change impacts on crop yield and quality with CO2 fertilization in China[J]. Philosophical transactions of the royal society of London series B, biological sciences, 2005, 360(1463): 2149-2154. [72] SHEEHY J E, MITCHELL P L, FERRER A B.Decline in rice grain yields with temperature: Models and correlations can give different estimates[J]. Field crops research,2006,98(2-3): 151-156. [73] KRISHNAN P, SWAIN D K, CHANDRA BHASKAR B, et al.Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies[J]. Agriculture, ecosystems & environment, 2007, 122(2): 233-242. [74] YOU L Z, ROSEGRANT M W, WOOD S, et al.Impact of growing season temperature on wheat productivity in China[J]. Agricultural and forest meteorology, 2009, 149(6-7): 1009-1014. [75] TAO F L, YOKOZAWA M, XU Y L, et al.Climate changes and trends in phenology and yields of field crops in China, 1981-2000[J]. Agricultural and forest meteorology, 2006, 138(1-4): 82-92. [76] WELCH J R, VINCENT J R, AUFFHAMMER M, et al.Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(33): 14562-14567. [77] SUN T, HASEGAWA T, LIU B, et al.Current rice models underestimate yield losses from short-term heat stresses[J]. Global change biology, 2021, 27(2): 402-416. [78] CHEN C Q, VAN GROENIGEN K J, YANG H Y, et al. Global warming and shifts in cropping systems together reduce China’s rice production[J]. Global food security, 2020, 24: 100359. [79] 尹朝静. 气候变化对中国水稻生产的影响研究[D].武汉:华中农业大学,2017. [80] ZHANG S, TAO F L, ZHANG Z.Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981-2009[J]. European journal of agronomy, 2014, 54: 70-83. [81] 张卫健, 陈长青, 江瑜, 等.气候变暖对我国水稻生产的综合影响及其应对策略[J].农业环境科学学报, 2020, 39(4): 805-811. [82] MOHAMMED A R, TARPLEY L.Effects of high night temperature and spikelet position on yield-related parameters of rice ( [83] 朱李阳. 播期和昼夜高温对水稻产量和稻米品质的影响及其生理机制[D].武汉:华中农业大学,2011. [84] WANG B, LI J L, WAN Y F, et al.Variable effects of 2℃ air warming on yield formation under elevated [CO2] in a Chinese double rice cropping system[J]. Agricultural and forest meteorology, 2019, 278: 107662. [85] 梁成刚,陈利平,汪燕,等.高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响[J].中国水稻科学,2010,24(4):398-402. [86] KIM H Y, LIM S S, KWAK J H, et al.Dry matter and nitrogen accumulation and partitioning in rice ( [87] XIE X J, ZHANG Y H, LI R Y, et al.Asymmetric warming effects on N dynamics and productivity in rice ( [88] LEMON E, VAN HOUTTE R.Ammonia exchange at the land surface[J]. Agronomy journal, 1980, 72(6): 876-883. [89] 黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579-583. [90] 彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103. [91] 李庆逵. 中国农业持续发展中的肥料问题[J].南昌:江西科学技术出版社,1997. [92] 李鸿伟,赵步洪,杨建昌.水稻高产与氮肥高效利用技术及其生物学基础[J].安徽农业科学,2010,38(32):18157-18159. [93] BROADBENT F E, DE DATTA S K, LAURELES E V. Measurement of nitrogen utilization efficiency in rice genotypes[J]. Agronomy journal, 1987, 79(5): 786-791. [94] 张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系[J].植物生理学通讯,1989(2):45-47. [95] 黄见良. 水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究[D].长沙:湖南农业大学,2003. [96] CASSMAN K G, GINES G C, DIZON M A, et al.Nitrogen-use efficiency in tropical lowland rice systems: Contributions from indigenous and applied nitrogen[J]. Field crops research, 1996, 47(1): 1-12. [97] 张洪程,吴桂成,戴其根,等.水稻氮肥精确后移及其机制[J].作物学报,2011,37(10):1837-1851. [98] 吴文革,张洪程,陈烨,等.超级中籼杂交水稻氮素积累利用特性与物质生产[J].作物学报,2008,34(6):1060-1068. [99] ITO S, HARA T, KAWANAMI Y, et al.Carbon and nitrogen transport during grain filling in rice under high-temperature conditions[J]. Journal of agronomy and crop science, 2009, 195(5): 368-376. [100] NAM H S, KWAK J H, LIM S S, et al.Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2[J]. Plant and soil, 2013, 369(1): 563-575. [101] 王斌,万运帆,郭晨,等.模拟大气温度和CO2浓度升高对双季稻氮素利用的影响[J].作物学报,2015,41(8):1295-1303. [102] WANG B, GUO C, WAN Y F, et al.Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system[J]. Science of the total environment, 2020, 706: 136063. [103] 张立极,潘根兴,张旭辉,等.大气CO2浓度和温度升高对水稻植株碳氮吸收及分配的影响[J].土壤,2015,47(1):26-32. [104] WANG J Q, LI L Q, LAM S K, et al.Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field[J]. Agricultural and forest meteorology, 2018, 250: 202-208. [105] 孙诚. 白天增温和夜间增温对水稻氮素积累及利用效率的影响[D].武汉:华中农业大学,2014. [106] JAYAWARDENA D M, HECKATHORN S A, BOLDT J K. A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate[J]. AoB plants, 2021, 13(4): plab031. [107] TASHIRO T, WARDLAW I F.The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice[J]. Functional plant biology, 1991, 18(3): 259. [108] 蔡威威,艾天成,万运帆,等.环境温度和CO2浓度升高对湖北早稻氮素含量及产量的影响[J].中国农业气象,2016,37(2):231-237. [109] CHEN S, ZHANG X G, ZHAO X, et al.Response of rice nitrogen physiology to high nighttime temperature during vegetative stage[J]. The scientific world journal, 2013, 2013: 649326. [110] ROY K S, BHATTACHARYYA P, NEOGI S, et al.Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice ( [111] MARMAGNE A, JASINSKI S, FAGARD M, et al.Post-flowering biotic and abiotic stresses impact nitrogen use efficiency and seed filling in [112] KUMAGAI E, TACARINDUA C P, HOMMA K, et al.Effects of elevated CO2 concentration and temperature on seed production and nitrogen concentration in soybean ( [113] WHITTINGTON H R, TILMAN D, POWERS J S.Consequences of elevated temperatures on legume biomass and nitrogen cycling in a field warming and biodiversity experiment in a North American prairie[J]. Functional plant biology, 2013, 40(11): 1147-1158. [114] DIJKSTRA F A, BLUMENTHAL D, MORGAN J A, et al.Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland[J]. New phytologist, 2010, 187(2): 426-437. [115] 刘美,马志良.模拟增温对青藏高原东部高寒灌丛土壤氮转化的影响[J].应用生态学报,2021,32(6):2045-2052. [116] MA L N, LÜ X T, LIU Y, et al.The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China[J]. PLoS One, 2011, 6(11): e27645. [117] PEPLAU T, SCHROEDER J, GREGORICH E, et al.Long-term geothermal warming reduced stocks of carbon but not nitrogen in a subarctic forest soil[J]. Global change biology,2021, 27(20): 5341-5355. [118] WU Z T, DIJKSTRA P, KOCH G W, et al.Biogeochemical and ecological feedbacks in grassland responses to warming[J]. Nature climate change, 2012, 2(6): 458-461. [119] PETERJOHN W T,MELILLO J M,STEUDLER P A,et al.Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures[J]. Ecological applications,1994,4(3):617-625. [120] RUSTAD L, CAMPBELL J, MARION G, et al.A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562. [121] DAI Z M, YU M J, CHEN H H, et al.Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global change biology, 2020, 26(9): 5267-5276. [122] HYVÖNEN R, ÅGREN G I, LINDER S, et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review[J]. New phytologist, 2007, 173(3): 463-480. [123] CHEN Z Z, ZHANG J B, XIONG Z Q, et al.Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature[J]. Soil biology and biochemistry, 2016, 94: 80-87. [124] JOSHI B, SINGH S D, MEGALA DEVI B, et al.Effect of elevated temperature on soil microbial activity and nitrogen transformations in wheat crop ( [125] HE Z L, ALVA A K, CALVERT D V, et al.Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH[J]. Soil science, 1999, 164(10): 750-758. [126] LIM S S, KWAK J H, LEE D S, et al.Ammonia volatilization from rice paddy soils fertilized with 15 under elevated CO2 and temperature[J]. Korean journal of environmental agriculture, 2009, 28(3): 233-237. [127] BHATTACHARYYA P, ROY K S, NEOGI S, et al.Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice ( [128] STUTTE C A, DA SILVA P R F. Nitrogen volatilization from rice leaves. I. Effects of genotype and air temperature1[J]. Crop science, 1981, 21(4): 596-600. |
| [1] | 曾志勇. 气候变化对长江中下游地区水稻产量的影响及情景模拟[J]. 湖北农业科学, 2025, 64(9): 51-55. |
| [2] | 田惠, 吴云艳, 王岩, 高利. 矮壮素和缩节胺对平欧杂种榛生长发育、果实品质及产量的影响[J]. 湖北农业科学, 2025, 64(9): 114-119. |
| [3] | 勒思, 涂夯, 胡佳晓, 刘进, 周慧颖, 孟冰欣, 余丽琴, 黎毛毛. 全生育期增温胁迫鉴定评价粳稻种质资源耐热性[J]. 湖北农业科学, 2025, 64(8): 35-41. |
| [4] | 乔祥梅, 王志龙, 刘列, 程加省, 黄廷芝, 程耿, 李红艳, 夏艳波, 王志伟. 西南麦区不同小麦品种(系)氮效率利用评价[J]. 湖北农业科学, 2025, 64(7): 10-14. |
| [5] | 熊伟, 张奥深, 陈炼, 汤涤洛, 徐敏, 刘国庆, 汪红武. 施氮模式对苎麻氮素利用、纤维产量及氮代谢酶活性的影响[J]. 湖北农业科学, 2025, 64(7): 53-60. |
| [6] | 罗肖郧, 李培德, 郑兴飞, 殷得所, 王红波, 胡建林, 胡鹏, 刘丹, 文艺, 陈东攀, 雷添杰, 徐得泽. 转录组和代谢组联合解析水稻分蘖期响应淹涝胁迫的分子机制[J]. 湖北农业科学, 2025, 64(6): 220-231. |
| [7] | 刘芬, 屈成, 洪超怡, 肖建平, 朱世军, 郝明. 水稻硅突变体的研究进展[J]. 湖北农业科学, 2025, 64(5): 5-9. |
| [8] | 张慧, 王谊, 杭晓宁, 张健, 廖敦秀, 唐荣莉. 受旱对水稻和土壤镉含量及镉抗性相关微生物的影响[J]. 湖北农业科学, 2025, 64(5): 10-16. |
| [9] | 李梦娟, 晏宇航, 李慕嵘, 史丽丽, KEMSENOUPAVELDARYL, 王小燕. 水稻秸秆还田配施氮肥对土壤碳氮及小麦生长特性和产量的影响[J]. 湖北农业科学, 2025, 64(5): 33-41. |
| [10] | 马滇璟, 赵家松, 严伟榆, 段光俊, 刘振洋, 吴绍天. 基于Stacking集成算法的中国南方地区粮食产量预测[J]. 湖北农业科学, 2025, 64(5): 155-159. |
| [11] | 王雯, 吴腾帅, 刘梦圆, 白海庆, 刘柏林. 氮、钾肥减量对沙地马铃薯农田土壤理化性质及产量的影响[J]. 湖北农业科学, 2025, 64(4): 64-69. |
| [12] | 秦洪波, 郭伦发, 张怡彬, 潘燕林, 王新桂. 不同土壤条件对蓝莓果实品质和产量的影响[J]. 湖北农业科学, 2025, 64(4): 118-121. |
| [13] | 姜成红, 周元委, 陈俊丞, 李双华, 李建民, 潘龙其. 不同抗根肿病位点对油菜的抗病性、农艺性状及产量的影响[J]. 湖北农业科学, 2025, 64(3): 74-78. |
| [14] | 杜璨, 王锋, 李应涛, 王玉鹏. 不同施肥类型下设施羊肚菌产量表现及经济效益[J]. 湖北农业科学, 2025, 64(2): 69-74. |
| [15] | 王廷宝, 刘刚, 邱东峰, 朱业宝, 张再君, 何勇, 刘之恩, 张诗骞, 刘耀威, 田志宏. 126份水稻种质资源在自然高温下的综合评价[J]. 湖北农业科学, 2025, 64(10): 1-9. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||