[1] 陈印,刚成诚,刘欢欢,等.基于GEE的苹果园地遥感信息提取研究——以陕西省渭北旱塬区为例[J].西北林学院学报,2024,39(1):36-43. [2] 高义民,同延安,路永莉,等.陕西渭北红富士苹果园土壤有效养分及长期施肥对产量的影响[J].园艺学报,2013,40(4):613-622. [3] 曾鹏宗,王旺,袁敏鑫,等.基于无人机遥感的苹果树冠层氮含量反演研究[J].山东农业科学,2024,56(10):167-173. [4] 王梦樊,吉艳芝,刘娉妤,等.果园土壤氮损失监测方法研究进展[J].植物营养与肥料学报,2023,29(3):553-572. [5] 郝琨. 黄土高原涌泉根灌土壤水氮耦合特性及对山地苹果的协同效应研究[D].西安:西安理工大学,2022. [6] HORTA A, AZEVEDO L, NEVES J, et al.Integrating portable X-ray fluorescence (pXRF) measurement uncertainty for accurate soil contamination mapping[J]. Geoderma, 2021, 382: 114712. [7] SUN W C, LIU S, ZHANG X, et al.Estimation of soil organic matter content using selected spectral subset of hyperspectral data[J]. Geoderma, 2022, 409: 115653. [8] MALLAH NOWKANDEH S, NOROOZI A A, HOMAEE M.Estimating soil organic matter content from Hyperion reflectance images using PLSR, PCR, MinR and SWR models in semi-arid regions of Iran[J]. Environmental development, 2018, 25: 23-32. [9] 叶淼,朱琳,刘旭东,等.基于连续小波变换、SHAP和XGBoost的土壤有机质含量高光谱反演[J].环境科学,2024,45(4):2280-2291. [10] 王海江,刘凡,YUNGER J A,等.不同粒径处理的土壤全氮含量高光谱特征拟合模型[J].农业机械学报,2019,50(2):195-204. [11] ABULAITI Y, SAWUT M, MAIMAITIAILI B, et al.A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton[J]. Computers and electronics in agriculture, 2020, 171: 105275. [12] 龚明冲,汪泓,张磊,等.基于光谱指数与连续小波变换的土壤有机碳含量估算[J].激光与光电子学进展,2025,62(3):360-368. [13] 于雷,洪永胜,周勇,等.连续小波变换高光谱数据的土壤有机质含量反演模型构建[J].光谱学与光谱分析,2016,36(5):1428-1433. [14] 玉米提·买明,王雪梅.连续小波变换的土壤有机质含量高光谱估测[J].光谱学与光谱分析,2022,42(4):1278-1284. [15] 王莉雯,卫亚星.湿地土壤全氮和全磷含量高光谱模型研究[J].生态学报,2016,36(16):5116-5125. [16] 李嘉琦,冯宇华,陈署晃,等.基于高光谱的土壤有机质及全氮估测[J].新疆农业科学,2024,61(10):2491-2499. [17] FARGE M.Wavelet transforms and their applications to turbulence[J]. Annual review of fluid mechanics, 1992, 24: 395-458. [18] ZHANG S W,SHEN Q,NIE C J,et al.Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2019, 211: 393-400. [19] 陈斌,贾建,张慧玉,等.基于脊波与小波变换的联合图像去噪方法[J].西北大学学报(自然科学版),2008,38(5):739-743. [20] 国佳欣,朱青,赵小敏,等.不同土地利用类型下土壤有机碳含量的高光谱反演[J].应用生态学报,2020,31(3):863-871. [21] WRIGHT A F, BAILEY J S.Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer[J]. Communications in soil science and plant analysis,2001, 32(19-20): 3243-3258. [22] 管铖,刘明月,满卫东,等.连续小波结合随机森林算法估算互花米草叶片叶绿素含量[J].光谱学与光谱分析,2024,44(10):2993-3000. [23] ZHAO L Y, TAN K, WANG X, et al.Hyperspectral feature selection for SOM prediction using deep reinforcement learning and multiple subset evaluation strategies[J]. Remote sensing, 2023, 15(1): 127. [24] 王英杰,高欣梅,包淑梅,等.基于高光谱数据的盐渍化土壤含盐量预测模型研究[J].农业工程,2024,14(10):113-120. [25] 郭艳萍,王雪梅,赵枫,等.基于最优数学和小波变换的绿洲耕层土壤盐分RF高光谱反演[J].农业工程学报,2025,41(3):83-93. [26] 王延仓,金永涛,王晓宁,等.传统光谱变换与连续小波耦合定量反演潮土有机质含量[J].光谱学与光谱分析,2018,38(8):2571-2577. [27] 安柏耸,王雪梅,黄晓宇,等.基于连续小波变换的土壤重金属镉含量的高光谱估测[J].地球与环境,2023,51(2):246-253. |