湖北农业科学 ›› 2025, Vol. 64 ›› Issue (11): 175-181.doi: 10.14088/j.cnki.issn0439-8114.2025.11.024

• 农业工程 • 上一篇    下一篇

基于哨兵光学的兴安盟土壤有机碳密度遥感反演研究

王欣欣1, 余静2,3,4, 朱华晨4, 赵珍妮4, 陈晓龙4   

  1. 1.重庆交通大学智慧城市学院,重庆 400074;
    2.重庆大学机械与运载工程学院,重庆 400044;
    3.中国科学院大学重庆学院,重庆 400700;
    4.重庆市地理信息和遥感应用中心,重庆 401120
  • 收稿日期:2025-03-24 出版日期:2025-11-25 发布日期:2025-12-05
  • 作者简介:王欣欣(2001-),女,山西运城人,硕士,主要从事遥感数据分类与三维点云处理研究,(电话)18295956030(电子信箱)wxxmsn222@outlook.com;余 静(1982-),女,湖北武汉人,正高级工程师,在读博士研究生,主要从事数字城市、时空大数据、遥感监测应用研究,(电话)15923356226(电子信箱)37225009@qq.com。

A remote sensing retrieval study of soil organic carbon density in Xing'an League based on Sentinel optical data

WANG Xin-xin1, YU Jing2,3,4, ZHU Hua-chen4, ZHAO Zhen-ni4, CHEN Xiao-long4   

  1. 1. School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China;
    2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China;
    3. Chongqing School, University of Chinese Academy of Sciences, Chongqing 400700, China;
    4. Chongqing Geomatics and Remote Sensing Application Center, Chongqing 401120, China
  • Received:2025-03-24 Published:2025-11-25 Online:2025-12-05

摘要: 通过遥感和地理信息技术对2023年内蒙古自治区兴安盟土壤有机碳密度进行空间估算。基于遥感数据、环境(地形、气候、土壤等)数据提取多种环境变量,以实地土壤采样获得的土壤属性数据作为响应变量。采用随机森林(RF)、极度梯度提升(XGBoost)和多层感知器(MLP)进行回归建模与精度比较。基于精度评价结果选择性能最佳的模型,最终完成研究区土壤有机碳密度的空间制图。结果表明,RF模型表现最佳(R2=0.86,RMSE=1.51 kg/m2),XGBoost模型性能略逊于RF模型,但仍表现良好,而MLP模型在本任务中表现明显不佳,精度远低于另外2个模型。兴安盟土壤有机碳密度空间分布呈明显的南北差异,整体从西北向东南递减,从垂直分布看,有机碳密度随取样深度增加呈先减少后增加的趋势。

关键词: 土壤, 有机碳密度, 哨兵光学, 遥感, 反演, 兴安盟

Abstract: A spatial estimation of soil organic carbon density in Xing'an League of the Inner Mongolia Autonomous Region was conducted for the year 2023 using remote sensing and geographic information technologies. Multiple environmental variables were extracted based on remote sensing data and environmental data (e.g., terrain, climate, soil), with soil property data obtained from field soil sampling serving as the response variable. Regression modeling and accuracy comparison were performed using Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP). Based on the accuracy evaluation results, the best-performing model was selected to ultimately complete the spatial mapping of soil organic carbon density in the study area. The results showed that the RF model performed the best (R2 = 0.86, RMSE = 1.51 kg/m2), the XGBoost model performed slightly worse than the RF model but still well, while the MLP model performed significantly worse in this task, with its accuracy being much lower than the other two models. The spatial distribution of soil organic carbon density in Xing'an League showed obvious north-south differences, generally decreasing from northwest to southeast. In terms of vertical distribution, the organic carbon density first decreased and then increased with increasing sampling depth.

Key words: soil, organic carbon density, Sentinel optical, remote sensing, inversion, Xing'an League

中图分类号: