| [1] | 
																						 
											 李会芳,朱艳芬,蔡倒录.新疆农业用水及主要农作物用水特征问题研究[J].农业与技术,2021,41(21):40-43.
											 											 | 
										
																													
																						| [2] | 
																						 
											 陈金宝. 遥感和地理信息系统技术在地理环境中的应用研究[J].工程建设与设计,2024(17):155-157.
											 											 | 
										
																													
																						| [3] | 
																						 
											 陈荣. 基于遥感影像的城市植被覆盖度监测研究[J].科技创新与生产力,2024,45(8):82-85.
											 											 | 
										
																													
																						| [4] | 
																						 
											 蒋猛,吴坤泽,高梦飞,等.光学遥感影像在洪涝灾害监测中的应用[J].测绘与空间地理信息,2023,46(12):73-76.
											 											 | 
										
																													
																						| [5] | 
																						 
											 HEARST M, DUMAIS S T, OSUNA E, et al.Support vector machines[J]. IEEE intelligent systems, 1998,13(4): 18-28.
											 											 | 
										
																													
																						| [6] | 
																						 
											 BREIMANL. Random Forests[J]. Machine learning,2001,45, 5-32.
											 											 | 
										
																													
																						| [7] | 
																						 
											 陈香. 机器学习和深度学习在遥感影像分类中的对比研究[J].测绘与空间地理信息,2024,47(7):72-75.
											 											 | 
										
																													
																						| [8] | 
																						 
											 KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[J].ACM,2017,60(6):84-90.
											 											 | 
										
																													
																						| [9] | 
																						 
											 WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern recognition, 2019, 90: 119-133.
											 											 | 
										
																													
																						| [10] | 
																						 
											 SHELHAMER E,LONG J,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE transactions on pattern analysis and machine intelligence, 2017,39(4):640-651.
											 											 | 
										
																													
																						| [11] | 
																						 
											 RONNEBERGER O, FISCHER P, BROX T.U-NET: Convolutional networks for biomedical image segmentation[J].Medical image computing and computer-assisted intervention-MICCAI,2015,18: 234-241.
											 											 | 
										
																													
																						| [12] | 
																						 
											 ZERROUKI N,BOUCHAFFRA D.Pixel-based or Object-based: Which approach is more appropriate for remote sensing image classification?[A].2014 IEEE international conference on systems[C]. San Diego, CA, USA: IEEE, 2014.864-869.
											 											 | 
										
																													
																						| [13] | 
																						 
											 CHEN Y,LIN Z,ZHAO X,et al.Deep learning-based classification of hyperspectral data[J].IEEE journal of selected topics in applied earth observations and remote sensing,2014,7(6):2094-2107.
											 											 | 
										
																													
																						| [14] | 
																						 
											 TONG X, XIA G, LU Q,et al.Land-cover classification with high-resolution remote sensing images using transferable deep models[J].Remote sensing of environment,2020,237: 111322.
											 											 | 
										
																													
																						| [15] | 
																						 
											 LI R, ZHENG S, DUAN C, WANG L,et al.Land cover classification from remote sensing images based on multi-scale fully convolutional network[J]. Geo-Spatial information science,2022,25(2):278-294.
											 											 | 
										
																													
																						| [16] | 
																						 
											 FANX,YANC,FANJ,et al. Improved U-Net remote sensing classification algorithm fusing attention and multiscale features[J]. Remote sensing,2022, 14(15):3591.
											 											 | 
										
																													
																						| [17] | 
																						 
											 ZHANG W,TANG P,ZHAO L.Fast and accurate land-cover classification on medium-resolution remote-sensing images using segmentation models[J].International journal of remote sensing,2021, 42(9):3277-3301.
											 											 | 
										
																													
																						| [18] | 
																						 
											 XU W,DENG X,GUO S,et al.High-Resolution U-Net:Preserving image details for cultivated land extraction[J]. Sensors,2020,20(15): 4064.
											 											 | 
										
																													
																						| [19] | 
																						 
											 LI W,WU J,CHEN H,et al.UNet combined with attention mechanism method for extracting flood submerged range[J].IEEE journal of selected topics in applied earth observations and remote sensing,2022,15: 6588-6597.
											 											 | 
										
																													
																						| [20] | 
																						 
											 SUN Y,BI F,GAO Y,et al.A Multi-Attention UNet for semantic segmentation in remote sensing images[J]. Symmetry,2022, 14(5):906.
											 											 | 
										
																													
																						| [21] | 
																						 
											 HU J,SHEN L, ALBANIE S,et al.Squeeze-and-Excitation networks[J].IEEE transactions on pattern analysis and machine intelligence,2020,42(8): 2011-2023.
											 											 | 
										
																													
																						| [22] | 
																						 
											 CHEN L, YAO H, FU J, et al.The classification and localization of crack using lightweight convolutional neural network with CBAM[J]. Engineering structures, 2023, 275: 115291.
											 											 | 
										
																													
																						| [23] | 
																						 
											 ZHOU G, LIU W, ZHU Q, et al.ECA-MobileNetV3 (Large)+ SegNet model for binary sugarcane classification of remotely sensed images[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-15.
											 											 | 
										
																													
																						| [24] | 
																						 
											 CHENL,PAPANDREOU G, KOKKINOS I,et al.Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE transactions on pattern analysis and machine intelligence,2017,40(4): 834-848.
											 											 | 
										
																													
																						| [25] | 
																						 
											 KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
											 											 | 
										
																													
																						| [26] | 
																						 
											 François W, CACCETTA P,CHEN W,et al.ResUNet-A: A deep learning framework for semantic segmentation of remotely sensed data[J].ISPRS journal of photogrammetry and remote sensing,2020,162:94-114.
											 											 | 
										
																													
																						| [27] | 
																						 
											 CHEN L,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[A].Proceedings of the European conference on computer vision (ECCV)[C]. Munich, Germany: Springer,2018. 801-818.
											 											 |