[1] 姜凤岐,朱教君,曾德慧,等.防护林经营学[M].北京:中国林业出版社,2003. [2] 刘浩,张峥男,曹林.机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J].遥感学报,2018,22(5):872-888. [3] 侯学会,李新华,隋学艳,等.近30年黄河三角洲生态环境遥感评价[J].山东农业科学,2018,50(2):7-12. [4] 张建锋,邢尚军.环境胁迫下刺槐人工林地土壤退化特征研究[J].土壤通报,2009,40(5):1086-1091. [5] 马有国,杜学惠.森林健康评价的遥感技术研究[J].森林工程,2019,35(2):37-44. [6] 姚玲,刘高焕,刘庆生,等.利用影像分类分析黄河三角洲人工刺槐林健康[J].武汉大学学报(信息科学版),2010,35(7):863-867. [7] 赵玉,王红,张珍珍.基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类[J].遥感技术与应用,2016, 31(2):359-367. [8] WANG H, PU R, ZHU Q, et al.Mapping health levels of Robinia pseudoacacia forests in the Yellow River delta, China, using IKONOS and Landsat 8 OLI imagery[J]. International journal of remote sensing, 2015, 36(4):1114-1135. [9] 李德仁,王长委,胡月明,等.遥感技术估算森林生物量的研究进展[J].武汉大学学报(信息科学版),2012,37(6):631-635. [10] BOUVIER M,DURRIEU S,FOURNIER R A,et al.Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data[J]. Remote sensing of environment, 2015, 156:322-334. [11] COOPS N C, VARHOLA A, BATER C W, et al.Assessing differences in tree and stand structure following beetle infestation using lidar data[J]. Remote sensing, 2009, 35(6):497-508. [12] DETTO M, ASNER G P, MULLER-LANDAU H C, et al. Spatial variability in tropical forest leaf area density from multireturn lidar and modeling[J]. Journal of geophysical research biogeosciences, 2015, 120(2):294-309. [13] EWIJK K V,TREITZ R,SCOTT N.Characterizing forest succession in Central Ontario using Lidar-derived indices[J]. Photogrammetric engineering & remote sensing,2011,77(3):261-269. [14] BALTA H,VELAGIC J,BOSSCHAERTS W, et al.Fast statistical outlier removal based method for large 3D point clouds of outdoor environments[J]. IFAC-papers on line,2018,51(22):348-353. [15] ZHAO X,GUO Q,SU Y,et al.Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of photogrammetry and remote sensing, 2016, 117:79-91. [16] JAKUBOWSKI M K, LI W K, GUO Q H, et al.Delineating individual trees from Lidar data: A comparison of vector- and raster-based segmentation approaches[J]. Remote sensing,2013,5(9):4163-4186. [17] ZHAO K,POPESCU S,NELSON R.Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers[J]. Remote sensing of environment,2009,113(1):182-196. [18] HUESCA M, ROTH K L, GARCÍA M, et al. Discrimination of canopy structural types in the sierra nevada mountains in central california[J]. Remote sensing, 2019, 11(9):1100. [19] 张建锋,邢尚军.环境胁迫下刺槐人工林地土壤退化特征研究[J].土壤通报,2009,40(5):1086-1091. [20] 杜振宇,马海林,刘方春,等.滨海盐碱地长期人工刺槐林的生长状况和叶片特性[J].生物灾害科学,2014,37(2):109-113. [21] HUANG C, ANDEREGG W R L, ASNER G P. Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure[J]. Remote sensing of environment, 2019, 231:111-233. [22] SHENDRYK I,BROICH M,TULBURE M G,et al.Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy:A case study for a floodplain eucalypt forest[J]. Remote sensing of environment, 2016, 187:202-217. |