[1] 胡迎思,于跃,朱凤武.基于图像处理的田间杂草识别定位技术的研究[J].农业与技术,2018,38(3):17-20. [2] 温德圣,许燕,周建平,等. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J].中国科技论文,2020, 15(3):287-292. [3] 毛文华,曹晶晶,姜红花,等.基于多特征的田间杂草识别方法[J].农业工程学报,2007,23(11): 206-209. [4] LINKER R, COHEN O, NAOR A.Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and electronics in agriculture, 2012, 81: 45-57. [5] 胡波,毛罕平,张艳诚.基于二维直方图的杂草图像分割算法[J].农业机械学报,2007,38(4):199-202. [6] 赵文仓,王军欣.杂草种子视觉不变特征提取及其种类识别[J].农业工程学报,2011,27(3):158-161. [7] 李志臣,姬长英.基于图像分析的杂草分形维数计算[J].农业工程学报,2006,22(11):175-178. [8] 龙满生,何东健.玉米苗期杂草的计算机识别技术研究[J].农业工程学报,2007,23(7):139-144. [9] 曹晶晶,王一鸣,毛文华,等.基于纹理和位置特征的麦田杂草识别方法[J].农业机械学报,2007,38(4):107-110. [10] MAJUMDAR S,JAYAS D S.Classification of cereal grains using machine vision:II Color models[J].Transaction s of the ASAE, 2000,43(6):1677-1680. [11] ZHANG N, CHAISATTAPAGON C.Effective criteria for weed identification in wheat fields using machine vision[J].Transactions of the ASAE,1995,38(3): 965-974. [12] 赵德安,刘晓洋,陈玉,等.苹果采摘机器人夜间识别方法[J].农业机械学报,2015,46(3): 15-22. [13] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[A]. 2017 IEEE Conference on computer vision and pattern recognition(CVPR)[C].Honolulu, HI, USA:IEEE,2017.6517-6525. [14] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[A]. 2016 IEEE Conference on computer vision and pattern recognition(CVPR)[C]. Las Vegas, NV, USA:IEEE, 2016. 779-788. [15] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[A].Proceedings of the 2017 IEEE conference on computer vision and pattern recognition[C]. Hawaii :IEEE,2017.4700-4708. [16] 王宇宁,庞智恒,袁德明.基于YOLO算法的车辆实时检测[J].武汉理工大学学报,2016,38(10):41-46. [17] DUAN K W, BAI S, XIE L X, et al.CenterNet: Keypoint triplets for object detection[A]. 2019 IEEE/CVF International conference on computer vision (ICCV)[C]. Seoul, Korea (South):IEEE, 2019.3668-3685. [18] 杨观赐,杨静,苏志东,等.改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J].自动化学报,2018,44(12):2238-2249. [19] 吕铄,蔡烜,冯瑞.基于改进损失函数的YOLOv3网络[J].计算机系统应用,2019,28(2): 1-7. [20] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521: 436-444. [21] ZHANG X,YANG W,TANG X L,et al.A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLOv3[J]. Sensors,2018,18(12):4308. [22] 王术波,韩宇,陈建,等.基于深度学习的无人机遥感生态灌区杂草分类[J].排灌机械工程学报,2018,36(11):1137-1141. |